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INTRODUCTION

The new inhibitors of the ErbB2 tyrosine kinase domain are potential lead compounds
against the most aggressive forms of breast cancer. To inhibit the catalytic domain of the
receptor, we intended to crystallize the tyrosine kinase domain of the receptor and
identify new lead candidates through a new virtual ligand screening procedure. The key
component and prerequisite of this technology is the three-dimensional model of the
target domain. This structure can either be obtained through an X-ray crystallography
experiment, the best case scenario, or through model building by homology to other
know structures. The next step is to improve the flexible docking procedure and perform
it in a high throughput manner to predict the binders of the target of interest. We have
pursued all three directions: tried to crystallize the domain, built several models of ErbB2
and worked on the optimization of parameters for the flexible docking calculations.

BODY

Task 1. To determine a high-resolution crystal structure of the tyrosine kinase domain
of ErbB2 (ErbB2-TKD).

The experimental determination of the ErbB2-TKD has been pursued by many
laboratories and companies, but so far no one has reported a success. The main bottleneck
is obtaining a reasonably large diffracting crystal. In that effort we focused on an attempt
to take advantage of the new microstallization technology which allows one to try many
different crystal conditions at a time.

We have spent the past year developing high throughput technologies to aid in the
structure determination of ErbB2. These technologies have been designed to allow for
high throughput co-crystal structure determinations, specifically to allow one to
determine a large number of inhibitor compounds that are predicted based on the virtual
ligand screening. Once a series of compounds have been found to be potential inhibitors
by virtual ligand screening and are confirmed by cell-based assays, we will be able to
quickly place these compounds into the robotics system and accurately determine their
binding site.

Using technology developed at Lawrence Berkeley National Laboratory and relocated to
the Genomics Institute for the Novartis Research Foundation last year, we have
determined that we can reproducibly create 20 nanoliter droplets for protein
crystallization trials. This current system evaluates a screen of 480 different
crystallization conditions (thus requiring 9.6 microliters per screen at a typical protein
concentration of 10 mgs/ml). In addition, we have developed an imaging system capable
of imaging and analyzing up to 138,000 trials per day. Since ErbB2 is expressed in low
quantities in a baculovirus expression system, this nanoliter volume technology for
protein crystallization will be extremely useful for the crystallization of the protein target.




We have also designed a novel plate that uses the nanoliter volumes described above and
is capable of being placed into a high throughput screening system and collecting
compounds in the same location as the crystallization trial. This will allow one to quickly
screen through potential inhibitors in a fast and efficient manner. The plates use a
standard 96 well format, but have a unique design to allow them to both collect screened

" compounds but also conduct crystallization experiments.

Task 2. To build structural models by homology for the kinase domains

In the absence of the experimental three-dimensional structure of the ErbB2 TKD, we
embarked on the homology study of this domain. There are several different kinase
domains with known three-dimensional structure, but all of them fall in the weak zone of
sequence similarity between 30 and 40% (Fig. 1). The domains include: the FGFR TK
(fibroblast growth factor receptor), the insulin receptor and its mutant, the LCK kinase,
SRC tyrosine kinase and haematopeotic cell kinase HCK (see Fig. 1)

To estimate the error in the model we built the alignments and models starting from two
different templates, the fibroblast growth factor receptor represented by the 1fgk entry in
the protein databank and the SRC tyrosine kinase 1fmk entry. The first model was built
on the basis of the alignment presented in Figure 2. In this alignment we built all the
missing loops and where necessary the loops have been expanded and searched against
an entire pdb database.

Figure 3 compares the template and the model and shows the amino acids that are
different between the two.

The analysis of the active site alone shows that the SRC kinase is a slightly better
template than the FGFR tyrosine kinase domain. The local residue conservation in the
active site is higher for the SRC template. We have built another model of ErbB2 to be
able to compare the two models built using different three-dimensional templates.

Figure 4 presents a binding site of the model with docked ATP analogue. The binding site
of ErbB2 is distinctly different from both the SRC kinase binding site (Figure 5) and the
FGFR binding site. Both in SRC and FGFR domains tyrosine 340 (the number is taken
from 2src structure) is replaced by leucine in ErbB2 domain. Another essential

difference: alanine 403 in both template structures is replaced by threonine, and V561 of
the FGFR structure is replaced by threonine.

The differences we observed as a result of modeling can be used to design molecules
specific to ErbB2 domain as opposed to the other kinases. The threonine substitutions
can be specifically targeted by a number of hydrogen bond donors and acceptors of a lead
compound. The leucine substitution leads to a large hydrophobic pocket that can also be
targeted in our design. We are currently working on better ways to exploit small
differences in the active sites.

Improvements of the docking technology.




We have used docking technology from Molsoft. Several attempts have been made to
estimate the accuracy of the procedure and validate the technology, which we intended to
use to search for new lead compounds. The best validation of the technology was a real
application of flexible docking to the design of RAR antagonists (Ref. 1) and agonists

(Ref 2.).

In manuscripts Ref. 3 and Ref. 4 we have demonstrated how the parameters of the
docking and scoring functions can be optimized using the known protein-ligand
complexes. In a separate effort we collaborated with the laboratory of Prof. Charles
Brooks IIT, who compared four different docking methods which could have been used
for the virtual ligand screening step of this project. Our original approach, using ICM, has
proved to be the best docking and screening procedure.

KEY RESEARCH ACCOMPLISHMENTS

1) The microcrystallization robotic system has been tested and optimized. The
nanoliter crystallization will allow to try many different crystallization conditions

for ErbB2

2) The models were built for ErbB2 based on two different templates with known
three-dimensional structures.

3) The binding site has been compared between the ErbB2 and FGFR tyrosine

kinases.
4) The ICM docking procedure has been compared with other docking algorithms
and is ready to be used for lead discovery.

REPORTABLE OUTCOMES

A web site with ErbB2 models has been created.
The manuscript comparing different flexible docking methods and the virtual ligand
screening algorithm has been prepared for publication (Ref. 5).

CONCLUSIONS

After preliminary work on microcrystallization we expect a reasonable chance to
crystallize the ErbB2 domain, even though it remains extremely challenging. Using the
above technology, we are now ready to begin crystallization trials.

We are ready to start docking studies using the models of ErbB2. These studies should
first explain the pattern of cross-reactivity with other tyrosine kinase ligands.

In the event that we obtain a crystal structure we will be ready to use it immediately for
virtual ligand screening.
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Fig 1.
All the tyrosine kinase domains with known three-dimensional structure with substantial
similarity (about 30%) to ErbB2 domain.
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Figure 2. The alignment used to build the model by homology. The alignment was
generated by the sequence - structure alignment algorithm which takes the secondary
structure and accessibility into account. The gaps have been expanded to allow for

modeling of short loops.
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Figure 3. A side-by-side view of the template fibroblast growth factor receptor tyrosine
kinase domain and the ErbB2 model. In yellow are shown the regions of sequence

identity.
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Fig. 4. The binding site of the ErbB2 model built using the SRC kinase domain template.
The molecular surface of the site is colored by physico-chemical properities:
hydrophobicity (green), hydrogen bonding donor (blue), hydrogen bonding acceptor

(red).
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Fig. 5 The binding site of the template tyrosine kinase domain (SRC kinase). This site is
compared with the model of ErbB2 shown on Figure 4. The color code is the same as for
Figure 4.
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Nuclear hormone receptors (NRs) are potential targets for thera-
peutic approaches to many clinical conditions, including cancer,
diabetes, and neurological diseases. The crystal structure of the
ligand binding domain of agonist-bound NRs enables the design of
compounds with agonist activity. However, with the exception of
the human estrogen receptor-«, the lack of antagonist-bound
“inactive” receptor structures hinders the rational design of re-
ceptor antagonists. In this study, we present a strategy for design-
ing such antagonists. We constructed a model of the inactive
conformation of human retinoic acid receptor-a by using informa-
tion derived from antagonist-bound estrogen receptor-a and ap-
plied a computer-based virtual screening algorithm to identify
retinoic acid receptor antagonists. Thus, the currently available
crystal structures of NRs may be used for the rational design of
antagonists, which could lead to the development of novel drugs
for a variety of diseases.

M embers of the nuclear hormone receptor (NR) family are
under the control of a wide variety of hormones and
ligands, such as steroids, retinoids, thyroid hormone, 1,25-
dihydroxy-vitamin D3, and prostanoids. Many of these NRs are
potential targets for the therapy of a variety of diseases: antag-
onists of estrogen receptor-a (ERa) (e.g., tamoxifen) are clin-
ically used for the treatment of breast cancer (1) whereas retinoic
acid receptor (RAR) agonists and antagonists block the growth
of a number of neoplastic cells including breast tumor cells (2,
3). Agonists for retinoid X receptors (RXRs) and peroxisome
proliferator-activated receptor y (PPARYy) are potential candi-
dates for use in the treatment of cancer and diabetes (PPARYy is
the receptor for the antidiabetic drug thiazolidinedione) (4-7),
whereas Nurrl ligands may be useful for treatment of Parkin-
son’s disecase (8). Thus, designing molecules that selectively
activate or inhibit specific NRs is of considerable biological
significance and will likely have the potential for use in important
clinical applications.

The crystal structures of the ligand binding domain (LBD) of
many members of the NR family recently have been solved, and
the ligand-dependent structural changes involved in transcrip-
tional activation have been clarified, enabling the structure-
based design of specific agonists (9, 10). Recent studies on ER«
also have shed light on the LBD structural changes mediated by
NR antagonists (11, 12): ER« agonists and antagonists super-
impose well and engage in a very similar network of hydrophobic
and electrostatic contacts with the receptor. However, in the
agonist-bound conformation, the C-terminal helix H12 sits like
a lid on top of the ligand (11) (a similar observation was made
for virtually all of the NR LBD structures solved so far; ref. 9).
In contrast, the two ERa antagonists present a protruding arm
that is not compatible with the “closed lid” conformation (11,
12) (Fig. 14). As a result, helix H12 is pushed away from the
ligand binding site and relocates in the coactivator-binding
pocket of the receptor (Fig. 1B) (11). Moreover, the LxxML
motif (where L is a leucine, M a methionine, and x any residue)
of the ERa helix H12 mimics, and probably competes with, a
LxxLL helical peptide found in a wide variety of coactivator
proteins. The alignment of the LBD of various NRs (13) suggests

1008-1013 | PNAS | February 1,2000 | vol.97 | no.3

that a common structural mechanism would be for the antago-
nists to induce the relocation of helix H12 into the hydrophobic
coactivator-binding groove of the receptor. The observation that
the progesterone receptor antagonist RU486 superimposes with
the natural hormone progesterone, but presents a protruding
arm similar to that of tamoxifen (14, 15) provides support for the
universality of this mechanism of antagonistic activity.

Our goal in this study is to provide further evidence for this
hypothesis by building a model of the antagonist-bound confor-
mation of RARea, a NR that plays an important role in the
differentiation and proliferation of a wide variety of cell types
and for which only the agonist bound conformation is known
(16-18), and to rationally and rapidly identify new antagonists
for this receptor. We built a model of the antagonist-bound
structure of RAR, based on the ERa/tamoxifen complex (12).
The model was used for the virtual screening of a database of
~150,000 available compounds, and antagonist candidates were
tested in vitro. Two novel antagonists and a novel agonist were
discovered. The ligands were specific for RAR, confirming the
validity of our model and the potential therapeutic application
of our strategy.

Materials and Methods

Building of the Model of Antagonist-Bound RAR. A helical peptide
PLIREMLENP corresponding to helix H12 of RARy was
docked into the putative coactivator binding pocket of another
RARvy molecule. We hypothesized that the IxxML motif con-
tacts the coactivator binding site of the receptor, and an auto-
matic docking procedure was carried out toward this site, with
flexible protein and peptide side chains, according to a biased
probability Monte Carlo energy minimization procedure (19,
20). Two critical features of the interaction between the LBDs of
NRs and their coactivators were used to carry out the docking:
(i) The “charge clamp,” initially observed in the complex
between SRC-1 and peroxisome proliferator-activated receptor
v(21), where a conserved glutamate (E414 in RARy) and lysine
(K246 in RARY) at opposite ends of the hydrophobic cavity of
the receptor contact the backbone of the coactivator’s LxxLL
box, enabled the orientation of the helical peptide. (if) The
finding that the leucines of the LxxLL motif of SRC-1 are buried
in the hydrophobic cavity of the receptor determines which side
of the helix faces the receptor. Here, the isoleucine, methionine,
and leucine of the IxxML motif were buried in the binding site
of RARY. Loose distance restraints were set between the charge

This paper was submitted directly (Track I} to the PNAS office.

Abbreviations: NR, nuclear hormone receptor; RAR, retinoic acid receptor; ER, estrogen
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Fig. 1. Modeling of the antagonist-bound structure of RAR. Agonist (white)
and antagonist (cyan) superimpose in the binding pocket of ERq, but the
antagonist presents an additional protruding arm that pushes helix 12 (H12,
green) away (A). As a result, H12 relocates in the coactivator binding pocket
of the receptor (H12, red) (B). Based on the ERa structure, helix H12 of RARy
(red) was docked to the coactivator binding pocket of the RARy-LBD (critical
hydrophobic residues are displayed in magenta) (C), and the C terminus of the
protein was remodeled from its agonist-bound conformation (green) to its
antagonist-bound conformation (red) (D).

clamp of the receptor (21) (i.e., E414 and K246) and backbone
nitrogen and oxygens of the peptide (nitrogen of the isoleucine
on one end, and carbonyl of the methionine, leucine, and
asparagine in the MLEN motifs, respectively). The energy of the
complex was minimized in the internal coordinate space by using
the modified ECEPP/3 potentials. The subset of the variables
minimized with the 1cM method (19, 20, 22, 23) included the side
chains of the receptor, six positional variables of the helix, and
the side-chain torsion angles of the helix.

After the 1cM docking procedure, we built a model of antag-
onist-bound RARYy. The structure of the receptor was kept rigid
but for the side chains and backbone of the 25 C-terminal
residues (corresponding to the last 10 residues of helix H11, the
loop from H11 to H12, and H12), and for the side chains of the
putative coactivator binding site (within 6 A of the previously
docked helical peptide). Tethers then were set between the C
terminus of the receptor and the corresponding residues of the
docked helical peptide, and the energy of the receptor was
minimized by a stochastic global energy optimization in the
internal coordinate space (22, 23).

The last step was, from the resulting model of antagonist-
bound RARY, to derive the structure of the antagonist-binding
pocket of RARe: the three nonidentical residues in the vicinity
of the binding pocket (A234, M272, and A397) were changed to
the RARw isoform (5234, 1272, and V397, respectively) and
encrgy-minimized. Another possibility would have been to in-
troduce the mutations before remodeling the C terminus of the
receptor. We preferred to proceed as described here to preserve
the integrity of the receptor during the critical remodeling of the
C-terminal end.

Receptor-Ligand Docking. An initial docking was carried out with

a grid potential representation of the receptor and flexible
ligand (24). The resulting conformation then was optimized with

Schapira et al.

a full atom representation of the receptor, flexible receptor side
chains, and flexible ligand, by an ICM stochastic global optimi-
zation algorithm as implemented in the MolSoft 1ICM 2.7 program
(23, 24).

Screening of a Virtual Library of Compounds. The flexible-ligand/
grid-potential-receptor docking algorithm (23, 24) was carried
out automatically on the Available Chemicals Directory library
of 153,000 available chemical compounds (MDL Information
Systems, San Leandro, CA). The screening took less than a
month on 10 194-MHz IP25 processors. Each compound was
assigned a score, according to its fit with the receptor, which took
into account continuum as well as discreet electrostatics, hydro-
phobicity, and entropy parameters (25). The distribution of the
compounds according to their score is presented at http://
abagyan.scripps.edu/PNAS/MS2000/. All compounds scoring
better (i.e., lower) than —32 were screened further for the
number of hydrogen bonds engaged with the receptor. The 134
compounds that made at least two hydrogen bonds with the
receptor were preselected. The 609 compounds scoring better
than —37 also were preselected, regardless of the hydrogen
bonding network. This preselection pool then was further min-
imized with a full atom representation of the receptor, as
described above. The quality of the fit of the 500 best-scoring
compounds then was visually estimated, and 32 compounds were
selected for biological testing. These compounds are not neces-
sarily the ones with the best final scores, but the ones we thought,
after careful visual inspection, presented the best characteristics,
such as Van der Waals fit or hydrogen bonding (see http://
abagyan.scripps.edu/PNAS/MS2000/).

It occurred to us that during the selection by the MolSoft
virtual screening procedure, it was preferable to set up an initial
cut-off value poorly selective (i.e., ~32) to recover a large pool
of preselected compounds and to apply to this pool subsequent
screens specific for the system, such as number of hydrogen
bonds (used here) or presence of a hydrogen bond acceptor (for
example) at a specific point of space. As a result, we derived the
value —32 as a good initial threshold (this value generates an
initial pool of 3,000-4,000 compounds).

Biological Activity of the Antagonist and Agonist Candidates. HeLa
cells were transfected by calcium phosphate precipitation using
1 pg of the Gald-responsive chloramphenicol acetyltransferase
(CAT) reporter pMC110 and 1 ug of Gal4-hRARa-LBD or 1 g
of Gal4-hRXRB-LBD. Studies also were performed with the
three wild-type hRAR isoforms (hRARa, hRARB, and
hRARY«) by using a AMTV-IR-CAT reporter as described (26,
27). Cell cultures were supplemented with indicated ligands
immediately after addition of the calcium phosphate/DNA
precipitate. Media and ligands were replaced after 24 h, and cells
were harvested and essayed for CAT activity 24 h later.

Results

Modeling of the RAR Antagonist Binding Pocket. The x-ray structure
of RARYy bound to the agonist all-trans RA is available (18);
however, the conformation of the receptor bound to an antag-
onist is not known. We used the observations made from the
structure of ERa bound to an agonist, 17B-estradiol (11), and
two antagonists, tamoxifen and raloxifene (11, 12), to build a
model of antagonist-bound RAR (Fig. 1 4 and B). We docked
helix H12 of RARY into the putative coactivator binding pocket
of the receptor as described (27) (see Materials and Methods for
details) (Fig. 1C) and remodeled the 25 C-terminal residues,
starting near the end of helix 11, through an extensive global
energy minimization procedure (Fig. 1D).

Docking of Known RAR Antagonists into the Modeled Receptor. A few
RAR antagonists have been described in the literature; and
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Fig. 2. RAR antagonists. Two known antagonists (A and B) and two novel
antagonists (C and D). (Left) Chemical structure. (Right) Conformation docked
into the receptor (part of the receptor is displayed as a ribbon representation,
and the binding pocket boundary is displayed in yellow). Cyan, carbons; red,
oxygen; blue, nitrogen; magenta, fluorine; yellow, sulfur. Hydrogens are not
represented for clarity.

several of them are serious candidates for cancer therapy (2, 28).
A well-characterized ligand is AGN193109, which inhibits the
three RAR isoforms at nanomolar concentrations (29). Another
very potent antagonist is MX781, which is effective against
ERa-positive and -negative breast cancer cells, with no apparent
toxicity (2). The activity of these two ligands has been presented
in detail, but no structural information has been reported on
their mode of interaction with the receptor. We built a model of
RARY complexed either with AGN193109 or MX781, by using
our flexible docking algorithm (24) (Fig. 2.4 and B). In both
cases, the antagonist superimposed with the agonist all-trans
RA. As observed for ERe, the antagonists also presented a
protruding arm, which was absent in RAR agonists. Very
importantly, this protruding arm coincided exactly with the
single opening in the ligand binding pocket of our modeled
receptor, generated by the displacement of helix H12 (Fig. 2 A
and B), and made stabilizing hydrophobic contacts with the
protein. It is very unlikely that this perfect fit, observed for both
antagonists, was fortuitous. On the contrary, this feature mimics
the inactivation mechanism revealed by the crystal structure of
ERa bound to tamoxifen and raloxifene. Therefore, our docking
results of AGN193109 and MX781 very strongly suggest that: (£)
the structural mechanisms of antagonist activity for ERa are
shared by other NRs, and (i) our model of the RAR antagonist
binding pocket could be used to design novel antagonists.

Screening of a Virtual Library and Discovery of Novel RAR Antagonists.
High throughput functional screening currently is the most used
method for the discovery of receptor-specific ligands. Although
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Fig. 3. Functional assays of the novel antagonists. Hela cells were trans-

fected with a Gal4-hRARa-LBD expression vector and a Gal4-CAT reporter
gene (results were similar in studies using the three hRAR isoforms). The cells
were incubated with 5 nM all-trans RA to stimulate CAT activity, and the effect
of each antagonist on inhibiting CAT was examined at 2 and 20 uM concen-
tration (the known antagonist RO-41-5253 was used as a positive control).

efficient, it requires the physical availability and management of
hundreds of thousands of chemical compounds. In the present
work, we used a virtual library composed of the predicted
structure of more than 150,000 available compounds (see Ma-
terials and Methods). Each compound was automatically docked
in a grid representation of the modeled RARa antagonist
binding pocket. Five grid potentials carried information on the
shape, hydrophobicity, electrostatics, and hydrogen-bonding
availability of the receptor, and enabled a rapid docking simu-
lation (24, 25). RARa was selected over the other two isoforms
(RAR and RARY) because recent data suggests it could be a
medically more relevant target (28). After an automatic selection
procedure with flexible ligands, and optimization of the selected
candidates with flexible protein side chains (see Materials and
Methods for details), 32 compounds were considered as potential
antagonists of RAR« and ordered.

To test these compounds in vitro, HeLa cells were transfected
with a Gal4-hRARae-LBD expression vector and a Gal4-CAT
reporter gene (26). Studies also were performed with the three
wild-type hRAR isoforms and a AMTV-IR-CAT reporter (26,
27). These gave similar results as those found with Gald-
hRARa-LBD (data not shown). The cells were incubated with
all-trans RA to stimulate CAT activity, and the effect of each
antagonist candidate on inhibiting CAT stimulation by all-trans
RA was examined. Possible toxicity of the compounds was
deduced from the amount of cellular protein extract after 2 days
of incubation. Two antagonist candidates inhibited CAT activity
by 55% and 33% at 20 uM with no apparent toxicity (Fig. 3). The
Gal4-hR AR activity illustrated in Fig. 3 was equivalent for the
other two RAR isoforms (data not shown). No inhibition was
observed when CAT expression was under the control of a
Gal4-mRXRB-LBD fusion construct, indicating that: (i) the
antagonists are specific for RAR, and (i) the inhibition is caused
by an interaction with the Gal4-RAR-LBD fusion protein and
does not result from some nonspecific effect on CAT activity
(data not shown).

The two R AR antagonists dock into the ligand binding pocket
of the receptor (Figs. 2 C and D and 4). As observed for
AGN193109 and MX781, they fit in the same binding pocket as
the natural agonist all-trans RA, but present an additional arm,
which protrudes out of the pocket. Antagonist 1 has a tri-fluoro
group where the retinoid receptor ligands usually carry a car-
boxylate group (in antagonist 2, the corresponding domain is
truncated). In our model, antagonist 2 engages in a hydrogen
bond with Ser-234 of the hRAR« (Fig. 4B). However, the S234A
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Fig. 4. Novel RAR antagonists. (A and B) Stereo representation of antago-
nists 1 and 2 docked into the binding site of the receptor. The ligands make
extensive hydrophobic interactions with residues from helix 3, helix 5, and
helix 11. Antagonist 2 (B) is engaged in an additional hydrogen bond with
Ser-234 of helix 3 and contacts the remodeled C terminus (red) at Pro-405. (C
and D) The fit of antagonists 1 and 2 into the receptor binding pocket is shown.

mutation in the other two isoforms does not alter the ligand
antagonist activity, suggesting that this hydrogen bond is not
essential for the interaction. An obvious way to increase the
affinity of these antagonists would be to substitute the tri-fluoro
group by a carboxylate in antagonist 1 or elongate and add a
carboxylate to antagonist 2, which would result in more stabi-
lizing interactions with two conserved arginines of the receptor.
However, the purpose of this work is to provide evidence that the
rational design of antagonists from the model of the inactive
receptor is feasible and not to optimize the affinity of the
compounds. The in vitro functional assays provide evidence that
our modeling scheme is relevant and can be used to design novel
antagonists of NRs.

We applied the same strategy to discover agonists, by using the
crystal structure of the active conformation of RARY (18), and
could discover three novel agonists 10-25% active at 200 nM and
fully active at 20 uM, of 30 compounds tested (data not shown).

Screening of a Database of Known Ligands. To assess the quality of
our setup of the ICM screening algorithm (23), we built a small
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virtual database made up of antagonists and agonists for differ-
ent members of the NR family (Table 1). We screened this
database with our model of antagonist-bound RAR, as we did
for the Available Chemicals Directory database. The screening
was repeated four times, to test the reproducibility of our
method. Table 1 shows that for each ligand the score varies a lot
from one screening to the other. This finding reflects the
generation of different ligand conformations from one docking
simulation to another (data not shown) and represents the
limitation of our method, as discussed below.

Table 1 lists as “selected” the ligands that met with the criteria
for preselection and final inspection during the Available Chem-
icals Directory screening (i.e., score better than —37 or score
better than —32 and at least two hydrogen bonds with the
receptor; see Materials and Methods for details). Seven of the
nine known RAR ligands (i.e., ~80%) and one of the six
non-RAR ligands (i.e., ~16%) were selected. The fact that RAR
agonists, as well as antagonists, produced good scores was
expected, because the binding pocket used for the screening is
equivalent to the agonist binding pocket, with an additional
opening generated by the remodeling of the C terminus of the
receptor. The two false negatives, AGN193836 and Ro415253,
were missed because of steric clashes, as discussed below.
Antagonist 1 was not found either, reflecting its rather low
affinity for the receptor. It is important to underline here that
we do not expect to detect all of the true binders. The algorithm
was rather designed to minimize the number of false positives,
which correlates with the number of unnecessary in vitro
experiments (25).

In that respect, the presence of one false positive of six
nonbinders could be alarming, because such a ratio would
represent about 25,000 false positives of a database of 150,000
compounds. However, the binding pockets of the NRs repre-
sented in this database are close in size and shape; as a result, the
database used for this benchmark was composed of molecules
presenting strong similarities with RAR ligands. Therefore, we
believe this ratio is not representative. The fact that we needed
to test only 32 molecules to discover three novel RAR ligands
confirms this assumption.

Next, we tried to address why some ligands, such as Ro415253,
were repeatedly missed by our screening algorithm (Ro415253
was still not selected after 10 docking simulations, data not
shown). We hypothesized that the ligand could not fit into the
potential maps generated from our model and carried out a
docking simulation with a full atom representation of the
receptor, according to a Monte Carlo energy minimization of the
complex, with both flexible ligand and flexible receptor side
chains (24). This docking simulation produced a solution were
the ligand fits into the binding pocket; the core of the ligand
(from the carboxylate to the internal sulfone) superimposes with
agonists such as all-trans RA, whereas the alkyl arm sticks out
of the pocket, as previously described for the other antagonists
(data not shown). The conformation of several receptor side
chains was modified during the docking simulation, to accom-
modate the size of the ligand, and this solution would not have
been found with rigid side chains. This finding suggests that
R0415253 could not fit into the potential maps generated from
the original receptor conformation, which we used for the
screening. We generated a new series of potential maps from the
optimized receptor structure and screened the small database of
known ligands with these maps four times as above (Table 1).
The score assigned to Ro415253 was twice lower (i.e. better)
than the threshold. Surprisingly, this new series of potential maps
totally eliminated the presence of both false positive and false
negative (all RAR ligands and only RAR ligands were selected).
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Table 1. Control screening of known NR ligands

Ligand Activity Score 1 Score 2 Score 3 Score 4 Selected Binding References
First series

AGN193836 RAR_agonist -19.9 -9.04 —-20.6 -19.7 + (33)
ATRA RAR pan-agonist -46.4 -41 -41.7 —41. + + (34)
Ro415253 RAR_antagonist —~25.5 —22. -28.3 —28.6 - + (28)
MX781 RAR antagonist —28. —23.9 —27.1 —36.4 + + 2)
CD2366 RAR pan-antagonist —28.5 —~23.3 —-30.9 -32.3 + + (34)
Targretin RXR pan-agonist -17.9 —18.1 -19.1 —18.6 - — 4)
SR11203 RXR pan-agonist —-27.5 -27. -27. —-27.2 - — (34)
Tamoxifen ER modulator -29.3 —27.5 -29.8 —28.3 - — (23)
Raloxifene ER modulator —23.4 —-20.8 —26.7 —-34.6 + — (22)
RU486 Progest Rec antag. —-21.2 -21.3 —21.4 -21.3 - - (25)
9cisRA RAR/RXR agonist -32.5 —-32.6 -329 -16.9 + + (34)
AGN193109 RAR pan-antagonist —39.2 —56. —-57.4 -394 + + (29)
AGNpartia RAR partial agonist -54.4 —-54.3 —-49.5 —-29.1 + + (29)
Am580 RAR_agonist —34.2 -34.4 —34.8 —-345 + + (34)
EM652 ER antagonist -27. =274 -21.7 -28.8 - - (35)
Antagonist 1 Novel RAR antag. —28.5 -28.1 -28.7 —2838 - (35
Antagonist 2 Novel RAR antag. -27.6 —-389 —40.2 -26.3 + (35)
Second series

AGN193836 RAR_agonist -37.2 -36.5 -36.7 —35.3 + + (33)
ATRA RAR pan-agonist -51.7 ~52.6 -51.8 -52.0 + + (34)
R0415253 RAR_antagonist —-28.9 —-244 -39.0 —-46.6 + + (28)
MX781 RAR antagonist —45.3 -48.0 —40.2 —45.6 + + 2)
CD2366 RAR pan-antagonist -50.7 —50.8 —29.3 —-29.3 + + (34)
Targretin RXR pan-agonist ~25.4 —-23.0 -22.2 -31.0 - - 4)
SR11203 RXR pan-agonist —28.2 —22.7 -22.1 -275 - (34)
Tamoxifen ER modulator —26.4 —24.6 -30.3 —-234 - (23)
Raloxifene ER modulator —15.6 —-23.7 -18.4 —-17.4 - (22)
RU486 Progest Rec antag. —-21.4 —20.6 —-20.3 —20.1 - - (25)
9cisRA RAR/RXR agonist —38.8 —39.5 -33.5 —38.7 + + (34)
AGN193109 RAR pan-antagonist —55.1 -55.5 -41.2 -54.8 + + (29)
AGNpartia RAR partial agonist -61.4 -61.3 -61.4 -61.0 + + (29)
Am580 RAR_agonist —46.6 —-47.2 —46.6 —46.5 + + (34)
EM652 ER antagonist —-26.3 —-23.1 —~23.7 -273 - - (35)
Antagonist 1 Novel RAR antag. —32.1 -32.1 -31.7 -31.6 + + (35)
Antagonist 2 Novel RAR antag. —33.3 —29.7 —33.8 —33.8 + + (35)

First series: A similar screening as the one performed on the ACD database was carried out four timeson a small database made of known RAR antagonists,
agonists, as well as ligands for other NRs and the two novel RAR antagonists. The ligands that met at least once with the criteria for selection used during the
ACD screening are listed as Selected. The ligands that are experimentally binding to RAR are listed as Binding. Second series: Screening of known ligands after
adjustment of the receptor's binding pocket conformation. The RAR antagonist Ro415253 was docked into our model of antagonist-bound RAR with flexible
receptor side chains and ligand. The resulting receptor conformation was used for a novel screening.

Discussion

In this study, we presented a strategy for the discovery of
antagonists, as well as agonists, for NRs, which are very impor-
tant targets for drug design. An important aspect of our ap-
proach was to exclude any preconceived pharmacophore bias
from our database screening. Most drug design strategies impose
chemical constraints on the selected molecule to conserve the
functional groups believed to be most important in existing
ligands, preventing the discovery of novel ligand types. In the
present work, we avoided pharmacophore constraints thanks to
a robust flexible docking program and scoring function: the only
filters used for screening were a good fit with the receptor and
reasonable bioavailability parameters (30). As a result, we
discovered novel original ligands that could be further optimized
into potent RAR-selective antagonists and agonists.

A limitation of our method, which leaves room for further
improvement, is that a compromise must be made between the
time allocated for each ligand (less than 2 min on one processor
here) and the reliability of the sampling of the conformational
space. Indeed, Table 1 shows that four runs for each ligand are
necessary to minimize efficiently missed hits (the remaining
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missed positives were not selected because of inappropriate
receptor side-chain conformations and not because of an insuf-
ficient sampling). Improvement of the computing power, the
docking algorithm, and the scoring function all could result in a
more robust virtual database screening.

Another drawback is that the conformation of the receptor is
not necessarily unique, but can vary from one ligand to another.
As a result, a ligand that fits in receptor conformation A will
never be found if receptor conformation B is used for the
screening. The case of Ro415253 illustrates this issue well: this
known antagonist was never selected, even after 10 trials,
because the binding pocket used for the screening was too
narrow. The potential maps used for the screening have a
smoother van der Waals profile than the atomic representation
of the receptor; as a result, the maps are more tolerant regarding
steric clashes with the ligand. However, the degree of tolerance
is limited and cannot accommodate important conformational
changes of the receptor side chains (or backbone, obviously).
When new potential maps generated from a model of RAR
bound to Ro415253 were used for screening, the three RAR
ligands missing from the first screening were selected (Table 1).
This finding confirms that the initial conformation of the
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receptor prevented the selection of, or reduced the chances of
selecting, some known RAR ligands. The false positive ralox-
ifenc (Table 1) was making extensive van der Waals interactions
with the narrow RAR binding pocket, which compensated for
the lack of stabilizing electrostatic interactions. However, in the
new conformation of the receptor (Table 1), the binding pocket
is wider and the fit not as tight. As a result, raloxifene was not
selected. This observation emphasizes, if necessary, that virtual
screening is very sensitive to the conformation of the receptor.

In that respect, it is interesting to note that the topology of the
remodeled C-terminal loop is probably not unique, and that the
conformation uscd to generate the receptor potential maps was
one among many others. It is thercfore legitimate to wonder
whether novel antagonists could not be discovered as efficiently
from a structure of the receptor where the C terminus, instead
of being remodeled, was truncated. This brings up a fundamental
question: is the role of antagonists only to antagonize the “closed
1id” conformation where helix H12 sits on top of the ligand
binding pocket, or are they also stabilizing the inactive confor-
mation of the receptor? It is important to keep it mind that the
C-terminal tail of RAR (as well as for other NRs) is a very
dynamic entity when no ligand is bound to the reccptor and
probably oscillates between active and inactive conformations.
Once bound in the ligand binding pocket, agonists contact the
H12 helix and lock the receptor in its coactivator-binding
conformation. Likewise, it is reasonable to speculate that an-
tagonists would contact the C-terminal tail of the receptor and
stabilizc the inactive state. However, it is probable that the
conformation of the receptor varics from one ligand to another;
indecd, recent results on ER« show that different ligands induce
distinct conformational change of the receptor (31). We used the
crystal structurc of ERa bound to tamoxifen to build our model
of inactive RAR and could find two specific antagonists, one of
which contacts the remodeled tail of the receptor. Although the
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conformation we used for the C-terminal tail was probably not
the only possible one, we believe that its presence was important
to bias the screening toward compounds that actually do contact
the flexible arm of RAR, as well as to impose a reasonable
boundary on the antagonist binding pocket, and prevent the
ligands from drifting out of the pocket during the docking
simulations.

An important point was to demonstrate that we could discover
novel antagonists for a NR other than ERe, provided that the
structure of the agonist-bound active form of the protein was
known, Rational design of ligands from a model of a receptor is
thought by many to yield very low success rates. The present
study demonstrates that this strategy can be successfully under-
taken with appropriate biological systems and robust modeling
tools. Moreover, targeting models of diverse members of the NR
family could be further justificd by the wealth of structural and
sequence information (9, 13), as well as the finding that NR
family members share similar mechanisms of transcriptional
activation and inhibition (9).

The recent publication of the crystal structures of medically
relevant receptor targets, such as peroxisome proliferator-activated
receptor v (21), RAR (18), RXR (32), ERa (11), or progesteronc
receptor (15), has created an exciting opportunity for the discovery
of novel ligands. This study demonstrates that the rational design of
both antagonists and agonists, by using computer-generated models
based on these structures, is possible.
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Introduction

Formation of non-covalent complexes is an essential part of almost any
biological process. Remarkable complexity of the biochemical machinery of the
living organisms would have been impossible without the ability of the
participating molecules to recognize each other among thousands of other
compounds simultaneously present in any cell. Specific binding between
molecules is crucial in catalysis, signal transduction, molecular transport
mechanisms, and determines the pharmacological effect of many drugs.

Better knowledge of the nature of molecular recognition on the microscopic
level is important for our understanding of the normal and pathological processes
in the cell and may help in such practical applications as drug design. X-ray
crystallography has revealed detailed atomic descriptions of many individual
proteins, nucleic acids and small biological molecules, as well as a number of
structures of complexes. The Protein Data Bank (PDB) (Bernstein et al. 1977),
where solved protein 3D structures are deposited is growing by about 1000 new
structures a year. Available structures of complexes can be analyzed to discover
the basic interactions and principles of molecular recognition, while the individual
structures can be used in the prediction of unknown or novel complexes. First
attempts to predict molecular interactions and design novel ligand utilized hand-
made physical models of receptor sites and ligands (Beddell et al. 1976). Since the
manipulation of the systems containing hundreds or thousands of atoms is
necessary to simulate the binding process, the progress in numerical computational
approaches was essential for the advancement of the macromoleculélr association
studies. Computer simulations of molecular recognition were first attempted more
then twenty years ago (Kuntz et al. 1982). Considerable progress has been
achieved in the recent years, but reliability and precision of the existing complex

prediction methods is still far from ideal.




Molecular docking simulations

Prediction of the structure of a complex starting from the structures of individual
molecules is commonly called molecular docking problem. Structures of the
protein-ligand and especially protein-protein complexes often show remarkable
shape complementarity on the interface, suggesting the idea that the docking
algorithms should search for such matching surfaces. Early approaches such as the
original DOCK (Kuntz et al. 1982) used exclusively this geometric criterion. Both
components of the complex were assumed rigid and the docking procedure
searched for favorable mutual orientation using “sphere matching” (DesJarlais et
al. 1986), least-squares fitting of the surface patterns (Bacon and Moult 1992,
Leach and Kuntz 1992), Fourier-transform (Katchalski-Katzir et al. 1992),
distance-matrix matching (Helmer-Citterich and Tramontano 1994) or “geometric
hashing” (Fischer et al. 1995). Purely geometric approaches demonstrated certain
success in recombining the structures of protein-protein complexes when the
components were taken from the native complexed structure, which is somewhat
artificial starting point. In the more realistic cases where the individual structures
of the constituents were used, these techniques often failed to distinguish the
correct orientation (Bacon and Moult 1992). High complementarity of the
interacting surfaces in the native complexes is in part due to the “induced fit”, e.g.
the conformational change in the constituents of the complex upon binding, while
individual structures often do not show the perfect matching expected in the
complex. There are two general directions in which the simplistic geometric
docking algorithms are being improved. First is the introduction of flexibility of
ligand and/or receptor to reproduce or mimic the induced fit, and the second is the
inclusion of binding determinants other than pure surface complementarity. First
attempts to introduce flexibility in protein-protein docking were limited to
“softcmnng” Of the geomctric criteria which would allow certain degiee of

penetration between the two interacting surfaces (Jiang and Kim 1991, Walls and



Sternberg 1992). Direct simulations with all-atom models may account for the
flexibility more accurately and sometimes show promising results (Nilges, M. &
Brunger 1993, DiNola et al. 1994, Abagyan et al. 1994), but are often extremely
computationally expensive. Whichever way the flexibility is introduced, it results
in much greater ambiguity of the results of geometric docking, since many
approximate matches can be found. The multiplicity of solutions calls for
additional criteria to select the correct answer. This lead to the inclusion in the
docking protocol of the other binding determinants such as estimates of solvation
free energy change or molecular mechanics energy (Shoichet and Kuntz 1991),
and ultimately, the approximations of the free energy change upon binding (Bohm
1994a,b). Most methods however still use simplistic but faster measures during the
generation of the bound conformations and than reevaluate the putative solutions

using more sophisticated potentials.

Docking as an energy optimization problem

Complexes considered in the docking studies are in general thermodynamically
stable systems. Thus, the native bound conformation should represent the global
minimum of the free energy. Consequently, to find the docked conformation, the
global minimum of the free energy function of the system has to be located. Since
the precise evaluation of the free energy is difficult, one can try to use some
approximation that would have similar global minimum. From the energetic point
of view, surface complementarity docking methods assume that the interaction
energy is proportional to the contact area or other similar measure of the fit of two
surfaces, possibly with some penalty for bad contacts (clashes). While this
assumption may account reasonably well for van der Waals interactions and, to
some extent, for solvation, it obviously disregards the energy contributions from
Speciiic pauwisc alomic interactions such as hydrogen bond fornmation and

electrostatics. Many recent docking studies try to incorporate these terms, often as




the additional criteria to select the answer from several solutions generated by
geometric docking, either using force-field energy evaluation (Shoichet and Kuntz
1991) or elaborate scoring functions (Bohm 1994b, Jain 1996). In several works,
physical energy terms were used throughout the algorithm (Abagyan et al. 1994,
Totrov and Abagyan 1994).

Two major components are required for a successful prediction of the structure
of the protein-ligand complex: an efficient global optimization procedure which is
capable of finding a global minimum for the strongly anisotropic function of
dozens of variables and a free energy approximation for the complex in solution
which is computationally inexpensive to be used in the search procedure, yet
sufficiently accurate to ensure the uniqueness of the native conformation. In the
following two parts we will review the energy calculations and global

optimization methods.

Encrgy terms

Energy calculations are at the center of almost any molecular simulation
technique. It is convenient and customary to divide the energy of the molecular
system into a number of components, or energy terms. Below, five major terms of

the molecular interaction energy will be considered in greater detail.

Electrostatic Interactions

Electromagnetism is the fundamental force of biochemistry (Davis and
McCammon 1990). All processes on the molecular level can be described in terms
of electromagnetic interaction combined with quantum mechanical and
thermodynamic effects. While covalent and hydrogen bonding as well as Van der
Waals interaction all have electrostatic nature, these interactione are complicated

by quantum mechanics and it is often convenient to separate them from the longer-



range electrostatic interactions. It is the latter type of interactions which is
customarily referred to as electrostatics in biomolecular structure. All proteins and
large majority of ligands contain polar atoms interacting strongly with each other
and the solvent in the wide range of distances. For a charged amino-acid the
strength of electrostatic forces may exceed by more than an order of magnitude the
strength of van der Waals interaction (Warshel and Russell 1984).

The evaluation of electrostatic interactions in proteins was first attempted by
Lingstrom-Lang in 1924 and a theory of electrostatics in macromolecules was
proposed (Tanford and Kirkwood 1957). These macroscopic studies gave some
qualitative insights, but only the availability of high-resolution protein structures
and computer calculations allowed quantitative studies of protein electrostatics.
The largest problem in electrostatic calculations is the presence of highly polar
solvent (water). In vacuum or in the uniform media the interaction between two

charges can be simply described by Coulomb law

E - k qlq?.
&R,

where q,, are the charges, Ry, is the distance between them, € the dielectric
constant and k is 332.0 when the charges are electron units, disiance is expressed
in angstroms and energy in kcal/mol. In aqueous environment this relation has to
be corrected to include the interaction of the charges under consideration with
large (virtually infinite) number of surrounding water molecules. Early attempts to
simulate macromolecules Without consideration of solvent screening ran into
difficulties, for example DNA double-helix would be torn apart by electrostatic
forces unless the electric charges were drastically reduced (Harvey 1989).

The straightforward and rigorous approach is to include explicitly sufficiently
thick layer of water molecules into the calculations. Obviously, it makes
calculations heavier, but the principal difficulty of the explicit methods is that
liquid water 1s essentially dynamic environment. Any static placement of water

molecules around the system under consideration would result in large errors, as



the physically observed interaction with water is the result of averaging over a
large thermodynamic ensemble of the possible states of the solvent. Thus, to
achieve accurate results one has to generate this ensemble by an extensive
molecular dynamics simulation (Rastelli ef al. 1995, Simmerling and Elber 1995).
While this might be the most rigorous approach to the solvation electrostatic
calculations, in most cases it is impractical. Langevine dipoles were proposed
(Rossky et al. 1978, Luzhkov and Warshel 1992) to make implicit averaging over
water molecule’s orientations, which eliminates the necessity of generation of a
large ensemble of water configurations. The method was applied in protein-protein
docking and gave promising results (Jackson et al. 1998).

The solvent effectively screens the interaction of the charges of the solute.
Generally the farther from each other and the more exposed to the solvent charges
are the more their interaction is attenuated. This observation suggested simple
corrections to the Coulomb law such as distance-dependant dielectric constant and
charge-scaling. While it is somewhat ad hoc and doesn’t take into account the
interaction of the individual charges with the solvent (self-energy), distance-
dependant dielectric constant €=goR is widely used because of it’s simplicity
(McCammon et al. 1979, Pickersgill 1988). This expression actually accelerates
calculations of the energy and forces because they become dependent only on R?
instead of R, eliminating costly square root calculations. Charge scaling was
shown to improve the simulation results for such systems as DNA. While these
crude approaches can hardly be used for quantitative evaluation of the properties
of a macromolecule in solution, they keep the extra calculations to a minimum.
Alternatively, the solvent can be considered as a continuous medium of high
dielectric constant. This treatment of solvent is more computationally tractable
than the inclusion of explicit water molecules. The electric potential in the

medium of variable dielectric constant obeys the Poisson differential equation

-V(E(r)V(r)=p(r)



where € is the dielectric constant (permittivity), ¢ is the electric potential, and p is
the charge density. If €(r)=const, the Poison equation is equivalent to the Coulomb
law, but the solution becomes more complicated when the space is divided into the
regions of various dielectric permittivity. Analytic results exist only for special
cases such as a sphere. Certain methods utilize these analytic solutions to obtain
relatively simple approximations of energy under an assumption that the protein
has near-spherical shape, e.g. image method (Friedman 1975, Schaefer and
Froemmel 1990, Abagyan and Totrov 1994). Similar assumptions are used in
generalized Born approximation (Still et al. 1990, Cramer and Truhlar 1992). The
precision of these methods is rather limited. Much more rigorous approach is to
solve the Poisson equation numerically. Several techniques based on this idea
were developed and are widely used in the protein energy calculations (Zauhar and
Morgan 1985, Juffer et al. 1991, Nicholls and Honig 1991, Zauhar and Varnek
1996). Main difficulty in their application to docking is high computationél cost. A
hybrid method was recently proposed and used in docking simulétion, utilizing
single numerical solution of Poisson equation for unbound receptor supplemented
by generalized Born-type terms calculated for each specific bound ligand

conformation (Majeux et al. 1999).

Hydrophobicity

Transfer to the aqueous solution of a number of organic groups results in a free
energy loss related to the ordering of water molecules around such groups which is
known as hydrophobic effect. The concept of hydrophobic interaction was
introduced by Kauzmann (Kauzmann 1959). This effect is similar in nature to the
macroscopic surface tension. Hydrophobic interaction is a major driving force in
the formation of most ligand-receptor complexes. For some ligands such as
steroids the interaction 1s almost exclusively hydrophobic, and many cther ligands

are amphiphylic with hydrophobic groups binding into hydrophobic pockets of the



receptor. By fitting the transfer free energies of hydrocarbons against the solvent
accessible surface, the hydrophobic contribution was shown (Chothia 1976) to be
proportional to the solvent accessible surface with fairly good precision. However,
the coefficient of this proportionality is a subject to some controversy since it
differs sharply from the microscopicalily observed value of the surface tension
constant. Microscopic surface tension value derived from the transfer energies of
aliphatic compounds is close to 30 cal/A? while macroscopic hydrocarbon-water
surface tension constant is ~75 cal/A%. Some attempts were made to explain the
discrepancy by taking into consideration the curvature dependence of the surface
tension and the difference of the molar volume of solute and solvent (Sharp et al.
1991).

It remains to be seen if the division of the water-solute interaction into solvation
electrostatics and hydrophobic components is the most adequate approach.
Methods based on this partitioning were shown to reproduce successfully
experimental data on transfer free ~energies for a large set of compounds (Sitkoff
at al. 1994). However, alternative approaches to water-solute interaction
evaluation were also developed, particularly a number of atomic solvation
parameter (ASP) based methods (Eisenberg and McLachlan 1986, Wesson and
Eisenberg 1992). ASP methods differentiate the atoms of the solute into a number
of types, each with a particular value of solvation energy surface density,
generalizing the surface tension. The underlying assumption is that the water-
solute interaction can be partitioned into atomic contributions, which are
proportional to the solvent accessible surface areas of the atoms. Popularity of
ASP approach is in part due to the simplicity and computational efficiency, while
the drawbacks are that neither proportionality of the solvation energy to the
accessible surface nor the partitioning of the solvation energy into atornic‘
contributions cannot be rigorously justified and are largely ad hoc assumptions.
Nevertheless, good agreement with experimental data can be achieved (Horton

and Lewis 1992), which might in part be explained by the large number of



adjustable parameters in the ASP models. It is questionable that these methods can
perform well on a set of compounds which is much larger then the set used for the

parameter adjustment.

Van der Waals interactions

The most generic type of interatomic force which exhibits itself as a very strong
repulsion at short distances and turns into relatively weak and quickly decreasing
attraction as the distance between two atoms grows. It is commonly described by

6-12 potential:

Ey, (Rij )= _ﬁj_']' %
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where Rj; is the distance between the two atoms i and j. Parameters A;; and B
depend on the types of atoms and are usually calculated using combination rules
from the parameters for the identical pairs of atoms, which are in turn evaluated
from quantum-mechanical or experimental data. Usually these parameters are
derived along with the other components of the atomic interaction energy to form
so-called molecular mechanics force-fields, such as CHARMM (Brooks et al.
1983), AMBER (Weiner et al. 1984), MMFF (Halgren 1995) and ECEPP
(Momany et al. 1975). While the 1/R® form of the attraction term has strict
quantum-mechanical basis, rigorous description of the repulsion term is more
complicated. Alternative forms of the repulsion term have been proposed (‘e.g.
Halgren 1995). Fortunately, the interactions in biomolecular systems occur mostly
in the range of inter-atomic distances where attractive term is prevalent, and seem
to avoid strong repulsion, alleviating the problem of the exact description of the
repulsive term.

Still, extreme sensitivity of the Van der Waals interactions to the small
CONiOritaiional cnanges uiaxes 1i's iNCius10n 11 ine caiculation of binding energy

problematic. This led a number of authors to simply omit the Van der Waals



contribution in the binding energy, as it seems to introduce more noise than signal
into the energy estimates (Krystek et al. 1993, Vajda et al. 1994). Such omission is
partly justified by the cancellation of ligand-receptor interactions in the bound
state and the ligand-solvent/receptor-solvent interactions in the unbound state. One
can assume that overall number of inter-atomic contacts in the system remains
nearly constant upon binding, resulting in the conservation of the total Van der
Waals interaction energy. Geometric docking can be used to achieve reasonably
good packing. However, this approach leaves out entirely the dependence of the
interaction energy on the quality of the interface. In the case of the docking of
novel ligands the evaluation of the interface is essential for determination of the
binding likelihood and the correct binding mode. Possible compromise is to
modify the Van der Waals potential so that it becomes less sensitive to the small

deviations in atomic coordinates.

Hydrogen Bonds

Hydrogen bond interaction is a specific attraction between polar hydrogens and a
number of heavy atoms (primarily oxygen, nitrogen, sulfur) which have unshared
electron pairs. The observations of large number of complexes with solved 3D
structures show that many ligands form extensive networks of hydrogen bonds
with their receptors, especially in cases of high specificity and high affinity
binding. Hydrogen bonds also play important role in the protein folding, where
their formation between the turns of the o-helixes and between the [B-strands
stabilizes these essential secondary structure elements. Unfortunately, there seems
to be no agreement so far about the adequate functional form for the hydrogen
bonding interaction term and even the energetic value of an average hydrogen
bond. Since its origin lays in the same electrostatic and quantum interactions as the
origin ol Vau der Waals aid eiecuostaiic terns, hydrogen bouding is often

included in the force field as a modification to the Van der Waals potential for the



specific atom pairs (Nemethy et al. 1992, Halgren 1995). The modification may
only involve change in the parameters (MMFF), or a different functional form (10-
12 instead of the standard 6-12 Van der Waals potential in ECEPP). Some force
fields simply ignore hydrogen bonding in hope that electrostatic term will provide
sufficient favorable contribution when positive hydrogen atoms and negative
hydrogen bond acceptors are brought together. However, the charge distribution
around the acceptor atoms is highly anisotropic since the unshared electron pairs
occupy sp* orbitals, resulting in strong anisotropy of the HB interaction. High
directionality of the HB interaction can also be observed in the solved structures of
the proteins and protein complexes (Ippolito et al. 1990). This anisotropy is
largely ignored by pair-wise, atom-centric potentials used by the majority of the
force fields. Such omission may not lead to large errors as long as only naturally
occurring conformations are considered since they often already have optimal or
sub-optimal configuration of hydrogen bonds. However, in the course of a
simulation, such as docking, it may result in erroneous formation of hydrogen
bonds of physically impossible geometries. Several forms of hydrogen-bonding
term with explicit angular dependence were proposed (Goodford 1985, Miller
1994).

Conformational Entropy

Binding of the ligand to the receptor usually imposes strong constraints upon it’s
conformational freedom. Also, the surface side-chains of the receptor which are in
contact with the ligand may no longer access some of their rotameric states. There
is a loss in translational and rotational degrees of freedom, which does not depend
on the participating molecules and can be seen as constant as long as only 1-to-1
stoicheometry complexes are considered. Thus, binding may result in substantial
decrease in the eniropy. As an iilusirdiion, one can consider the burial of onc CH;

group in an aliphatic chain. The loss of three rotameric states of the chain results



in the enthropy loss which adds R7In3 = 0.66 kcal/mole to the free energy of the
system, while the decrease in hydrophobic term is around -0.88 kcal/mole (Yang
et al. 1992). _

Exact determination of the entropy change would require extensive molecular
dynamics simulations. Currently such simulations are too expensive
computationally to use them routinely for a large number of putative complexed
structures. Docking methods generally assume that upon binding the ligand is
locked in a single conformation. While in some cases this assumption might be far
from true, it allows exclusion of the conformational enthropy term from docking

simulations as a constant.
Conformational search techniques

An efficient global optimization procedure is a key component of the décking
protocol. Many approaches treat both ligand and receptor as rigid bodies (Kuntz et
al. 1982, Cherfils et al. 1991, Bacon and Moult 1992). Such treatment allows for
rapid location of the optimal mutual orientation of the two molecules by special
techniques (DOCK), but has limited applicability since the majority of small
ligands are flexible and structural rearrangements occur in a number of receptors.
To some extent, the limitations of the rigid-body docking can be circumvented if
several low-energy conformations of the ligand are generated and then docked.
The best solution can be than picked as an answer (Kearsley et al. 1994, Leach
1994). However, the number of conformations which have to be docked
independently to achieve an accurate solution may become very large even for
relatively small compounds. Therefore, many techniques try to treat the flexibility
of the ligand more directly. Flexible ligand often can be partitioned into rigid
fragments. For each fragment, rigid docking can produce a number of favorable
orientations. Fragments are then reassembled into the original chemical structure

(“Hammerhead” in Welch et al. 1996, Gulukota et al. 1996). Alternatively, one



fragment is assumed to be essential for binding and placed in the active site first,
then others are attached incrementally (Bohm 1992, Rarey et al. 1996).

Global optimization of the free energy function with respect to the orientation
and the conformation of the ligand is, perhaps, the most strict approach. However,
two features of the protein-ligand energy landscape complicate the problem of the
energy optimization: high dimensionality and multiplicity of local minima. High
dimensionality makes the exhaustive search of the conformational space very
computationally expensive. Large number of local minima makes rational
determination of the global search direction virtually impossible and limits the
usability of the derivatives to a small vicinity of one local minimum. In order to
deal with these difficulties, techniques such as Monte-Carlo minimization
(Caflisch et al. 1992, Totrov and Abagyan 1997, Trosset and Scheraga 1998),
Monte-Carlo with simulated annealing (Goodsell and Olson 1990, Goodsell et al.
1996), and genetic algorithm (Jones et al. 1997) have been applied with various
success. Some of these methods use internal coordinates to reduce the

dimensionality of the search space.

Monte-Carlo

The term Monte-Carlo has been introduced by Metropolis and Ulam (Metropolis
et al. 1953), with an allusion to the essentially random nature of such simulations.
Monte-Carlo minimization consists of three repetitive steps:

1. Random Jump. One or several variables in the system are changed randomly.

2. Local Minimization. The energy of randomized conformation is optimized
using conjugate gradient or quasi-Newton technique to achieve a new local
minimum.

3. Evaluation. New conformation is accepted or rejected according to the

Metropelis criieriou: il tue energy of e new confornation Egey is lower than the



energy of the old one Eyq4 , new conformation is always accepted and used in the
next iteration. Otherwise, it is accepted with the probability of |

Pace=exp(-(Epew-Eo)’kT), where k is Boltzman’s constant and T is the effective
temperature of the simulation.

It has been established that a full local minimization after each random step
greatly improves the efficiency of the procedure (Li and Scheraga 1987, Abagyan
and Argos 1992). However, some components of the energy, such as solvation
electrostatic energy, might have no derivatives and/or might be too
computationally expensive for local minimization. Double-energy MC
minimization scheme (Abagyan et al. 1994) circumvents this obstacle by using
two sets of energy terms, one for the local gradient minimization stage and another
one for the Metropolis criterion evaluation stage in the MC step. Such division can
be justified if the extra terms included for the Metropolis criterion are relatively

“slow”, insensitive to small conformational changes.

Internal coordinates

One of the principal difficulties in biomolecular simulations is the size of the
system which often contains thousands of atoms. As a consequence, the
conformational space has a very high dimensionality, complicating the search for
the global energy minimum. The use of internal coordinates substantially reduces
the number of variables defining the conformation of the system. Cartesian
description requires 3 variables (X,y,z) per atom . Internal coordinates description
uses bond lengths, planar angles and torsion angles instead. Since bond lengths
and planar angles are essentially rigid at normal conditions, one can consider them
as constants and only allow torsion angle changes (rotations around the bonds),
reducing the dimensionality of conformational space at least threefold. Practically
even gicater roduciion 15 aulncved silce auw vy Uranching point scveral atoms

share the same torsion angle (Fig 1).



The formal geometrical description to allow efficient manipulations of the multi-
molecular system in internal coordinates with arbitrary subsets of free and fixed
variables was introduced (Abagyan et al. 1994). The technique represents the
system as a directed treelike graph imposed on all atoms as well as on some
auxiliary virtual atoms (Fig 1). Each atom in this basic description has three
geometric parameters determining its position with respect to the preceding part of
the tree. The parameters are bond length b, bond angle @ and torsion ¢ or phase ¢
dihedral angles for the main branch and side branches, respectively. The sub-trees
of different molecules join in the starting triple of virtual atoms which are fixed at
the origin of the coordinate system and allow for standard treatment of all real
atoms including the root atoms of each molecular sub-tree. When several internal
variables are fixed (considered constant) a group of atoms may form so-called
rigid-body, where mutual positions of the atoms involved do not change upon any
changes of the remaining free variables. The concept of rigid bodies provides an
important additional advantage for the energy calculations, since all pair-wise
energy contributions from the atoms within a rigid body are constant. Such
contributions often can be excluded from the calculations when only the relative

energy change is important, improving the computational performance.

Other approaches

Various global optimization techniques were applied to the docking problem.
Among the more popular is the genetic algorithm (GA), which was widely applied
in protein folding simulations (Clearwater 1991, Unger and Moult 1993, Dandekar
and Argos 1994). The idea of GA is to mimic the evolution process by
manipulating “chromosomes”, each containing a set of variable values defining a
possible solution, e.g. a certain binding mode. The values inside the
“chromosome™ migh. be the 10tatable torsion angles of the ligand and the variables

defining the relative orientation of the ligand and receptor. The algorithm starts



with a random “population” of chromosomes, from which new generations are
produced by “mutations” and “crossovers”, which involve, respectively,
randomization of some variables inside the chromosome or reshuffling of some
variable values between two chromosomes. The best-fit “individuals” are
preserved while others are discarded according to the fitness function. The
assumption is that as the algorithm progresses, this strategy will find and keep the
advantageous combinations of variable values, converging to the minimum of the
fitness function. The GA docking was used fairly successfully to reconstitute a
large number of known complexes (Jones et al. 1997), although no tests were
undertaken to compare its performance with more conventional approaches such

as MC.

Notably, Fourier-transform was also used to locate the optimal geometric fit
(Katchalski-Katzir et al. 1992). The method is efficient and attractively simple
conceptually. Unfortunately it seems to be only be applicable to a rather simplistic
fitness function and can only optimize efficiently the three translational degrees of
freedom. Rotations still need to be sampled by other means, i.e. systematic or
random search. Fourier-transform approach may be useful primarily in the cases
where the interacting molecules are very big, making other methods too expensive
computationally.

Molecular dynamics (MD) simulation can be used as an optimization method, and
potentially it can provide a realistic picture of the binding process. However, MD
is the most computationally expensive approach, and so far it is impossible to
simulate the whole progress of the system from unbound components to the
complex. The use of MD in docking is now limited to the simulations of the
already bound complexes, where it is successfully used to predict various
thermodynamic properties (Rosenfeld et al. 1995, Miranker and Karplus 1991, DiNola
et al. 1994, Luty et al. 1995). Somewhat better performance can be achieved using

so-called Brownian dynamics (Rossky ez al. 1978), which was applied to simulate



long-range diffusion-like motions of the interacting macromolecules (Kozack and

Subramaniam 1993).

An example docking study on a set of protein-ligandv complexes

with known 3D structures.

We tested the ability of internal coordinate MC minimization docking procedure
to predict the native conformations of protein-ligand complexes using a
benchmark set of 51 high-resolution structures from PDB. Ligands were diverse in
size, from 12 to 84 atoms, and had a broad range of chemical properties and
included sugars, fatty acids, phosphates, bases, heterocyclic and other compounds,
which insured the applicability of the docking procedure to a large variety of

receptor/ligand pairs.

Methods

Energy

Our energy estimate used during the docking simulations consisted of the

following terms:
E = Erpint Evw +Eup+Egp+ERL

AEpgy,, 1s the force-field energy which included internal Van der Waals
interactions and torsion energy for the ligand calculated with ECEPP/3 parameters
(Nemethy et al. 1992). Since ECEPP/3 only has parameters for amino-acid atom
types, the atoms of ligands were assigned closest chemically similar atom types.

The rest of the terms refer to inter-molecular interactions.

Because of its extreme rigidity, Van der Waals potential in its standard 6-12
form may introduce large noise in the energy function. For inter-molecular

interactions we therefore used a modified smoother form of the potential with



most of the repulsive part truncated. Truncation was achieved by the following
transformation of the original value of Van der Waals potential :

E), .if E), <0
Evw = ———ESWEm Jif ES, >0
En+E_.

This expression ensures smooth transition from undistorted form of Van der
Waals potential in the negative range of values to increasingly attenuated form in
the positive range, asymptotically approaching E,, cutoff value. E,,, was chosen
on the basis of preliminary tests to be 1.5 kcal/mole. Lower values sometimes
result in-severély clashed docking solutions as the Van der Waals repulsion is no
longer able to compete with attractive terms, primarily electrostatics. This and

other interaction potentials were precalculated on a grid to accelerate energy

evaluation during the simulations. The grid cell size was set to 0.5A.

AEyp is hydrogen bonding term which was calculated using Gaussian-type
potentiai positioned around the center of each lone electron pair of the hydrogen-

bond acceptors:

(r-n,)

— 0 diig
Eyp =Ee

The peak interaction energy E’4s was assumed to be 2.5 kcal/mol as an average of

various estimates, and the radius of the interaction sphere dy was assumed to be

" 1.4A, allowing for about 30° to 40° deviation from the ideal geometry in

accordance with observations in X-ray structures. ry, is the radius-vector of the
interaction center, which was placed 1.7A from the atom. In case of hydrogen
atoms the center was placed along the axis of the covalent bond attaching the
hydrogen to the rest of the molecule. In case of heavy sp® atoms, one ( for
nitrogen) or two ( for oxygen ) centers were placed at the angle of 120° to the
existing covalent bond. For sp’ oxygen and sulfur, two centers were placed in

tetrahedral geometry, at 109° to the existing covalent bonds and to each other.



Electrostatic term Eg used modified Coulomb law with distance dependant
dielectric constant €=4r. Hydrophobic term Eyp was calculated as roughly
proportional to the buried hydrophobic surface with the free energy density of 30
cal/molV/A®. To accelerate calculations, a grid-based form of the hydrophobic
potential was developed. The fragments of the solvent-accessible surface were
generated using the modified Shrake and Rupley algorithm (Shrake and Rupley
1973, Abagyan et al. 1994). The algorithm produces dots which evenly cover the
surface. The hydrophobic potential on the grid was then calculated as:

dgr 1s the distance to the closest point of the hydrophobic surface, and d,, is
effective radius of the hydrophobic interaction which was set to the diameter of
the water molecule 2.8A. The value of E°Hp=3 kcal/mole was chosen to
approximate the surface tension of 30 cal/mol/A* for extended hydrophobic

surfaces in test cases.
Conformational search procedure

All ligand /receptor pairs in the set were docked using flexible Monte-Carlo
docking procedure with potential maps as implemented in ICM software (Totrov
and Abagyan 1997, Abagyan et al. 1994, Abagyan and Totrov 1994). The ICM
method describes both the relative positions of two molecules and their
conformations by a uniform set of internal variables. Any subset of internal
variables can be subjected to local or global energy minimization procedures. In
this study, the global Monte-Carlo minimization procedure similar to previously
described (Totrov and Abagyan 1997, Abagyan et al. 1994) was used. It involved
random conformational change of two possible types: positional Pseudo-Brownian
random move or internal torsion modification, followed by local energy
minimization (up to 100 steps of conjugate gradient minimization) and selection

by the Metropolis criterion (temperature factor was set to 600K). Pseudo-




Brownian random moves changed the position of the ligand molecule as a whole

with a certain amplitude (here we used 24), as well as randomly rotated it around
it’s center of gravity by an angle close to the translation amplitude over the radius
of gyration. Internal torsion angles of the ligand were randomly changed one at a
time, with the amplitude of 180°.

Geometrically different (as evaluated by the root mean square displacement of
the ligand atoms) and low energy conformations were accumulated in the
conformational stack (Abagyan and Argos 1992). Adaptive length of the MC runs
was used, with the limit on the total number of steps proportional to the size
(number of atoms) of the ligand: Nucgeps=50*Npigaom. Similarly, an adaptive
length  of local minimization during the MC run was used:
NiocMinsteps=29+NLigaom- The factors in these relations were established

empirically from the convergence and efficiency considerations.

Test data set

The set of 51 complexes (Table 1.) was extracted from high-resolution PDB
structures. The structures were selected according to a number of criteria: We
discarded all structures at resolutions worse than 2.0A since large errors in the
receptor coordinates could result in poor docking and recognition for reasons
unrelated to our study. Some complexes had the ligand bound covalently to the
receptor and were also discarded since the prediction of such chemical reactions is
beyond the scope of our approach. We also omitted complexes where metal ions
were directly involved in the protein-ligand interaction since the force field used in
the simulations did not provide for adequate modeling of such atoms. For a
number of receptors structures of several complexes with different ligands were
available. In such cases we used a single receptor structure in docking experiments
with all ligande, HMvdragen atoms were added to all X-ray structures uvsing the

hydrogen placement algorithm of ICM software (Abagyan et al. 1994). Electric



charges were assigned to the atoms of the ligands using bond-charge increment

algorithm from MMFF94 force field (Halgren 1995).

Results and discussion
51 complexes with known structures were predicted. Only the best-energy
conformation in each case was retained and compared to the experimental

structure. 35 predictions were within 3A from the native structure, producing

- correct overall positioning of the ligand, and 26 were within 24, giving fairly

detailed picture of the receptor-ligand interaction (Table 1, Fig.2). As expected,
good precision is achieved for tighter, enclosed binding pockets, while for more
loose, open binding sites such as in phospholipase, FK506 binding protein or fatty
acid binding protein the prediction quality is often marginal. Single simulation
took from 2 to 12 min CPU time, which illustrates the advantage of pre-calculated
grid potentials, since similar simulations with full-atom receptor molecule take
several hours (Totrov and Abagyan 1997).

The results show that docking techniques, such as flexible docking in internal
coordinates using grid potential representation of the receptor molecule, in the
majority of cases can produce a model of protein-ligand interaction with the
precision allowing its use in applications such as drug design. However, an
important condition for the current docking methods is the relative rigidity of the
binding site. Reliable ways to treat receptor flexibility are yet to be developed. The
growth in the available computer power and improvement in simulation
techniques should ultimately allow detailed predictions of flexible receptor and

ligand interaction.
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Table 1 Ligands/receptor pairs used in docking simulations

Sourc | Receptor Ligand RMSD
e A
(PDB
code)
lhmr | Fatty acid binding elaidic acid 4.89
protein
lhms | Fatty acid binding oleic acid 6.69
protein
lhmt | Fatty acid binding stearic acid 3.49
protein
liecm' | Intestinal fatty acid Myristate 1.79
binding protein
licn Intestinal fatty acid oleic acid 1.46
binding protein
4dfr' DHFR Methotrexate 1.81
1dy;j DHFR 5,10-dideazatetrahydrofolate 2.84
1dyh DHFR 5-deazafolate 248
1dyi DHFR Folate 345
ljom | DHFR folinic acid 5.00
2tbs’ Trypsin Benzamidine 1.91
Itng Trypsin Aminomethylcyclohexane 1.27
Itnh Trypsin 4-fluorobenzylamine 1.94
Itni Trypsin 4-phenylbutylamine 3.05
1tnj Trypsin 2-phenylethylamine 2.79
ltnk Trypsin 3-phenylpropylamine 2.60
ltnl Trypsin Tranylcypromine 2.11
1881 Lysozyme mutant o-xylene 0.42
1851 Lysozyme mutant Indole _ 1.33
1841 Lysozyme mutant Isobutylbenzene 4.53
1871 Lysozyme mutant p-xylene 1.75
1861 Lysozyme mutant n-butylbenzene 1.62
1811 Lysozyme mutant Benzene 0.80
1831 Lysozyme mutant Indene 0.52
1821 Lysozyme mutant Benzofuran 0.43
lerb' Retinol binding protein | n-ethyl retinamide 0.99
1fel Retinol binding protein | Fenretinide 2.21
Ifem | Retinol binding protein | Retinoic acid 2.35
1fen Retinol binding protein | Axerophthene 0.93
1sre’ Streptavidin Haba 1.50




Isrg Streptavidin

Lsri Streptavidin

Lstj Streptavidin

lgar Glycinamide
ribonucleotide
transformylase

1fnd Ferredoxin reductase

lake Adenylate kinase

Lrcf Flavodoxin

Imrj o-momorcharin

Ilmrg o-trichosanthin

Imdq | Maltodextrin-binding
protein

Igca Glucose/galactose-
binding protein

2dri D-ribose-binding protein

1lst Lysine-, arginine-,
ornithine-binding protein

1hsl Histidine-binding protein

lars Aspartate
aminotransferase

1fkh FK506 binding protei
Imai | Phospholipase c -1
1nsc! Neuraminidase
Insd | Neuraminidase
livd Neuraminidase

1fgi FGF receptor kinase

3’-methyl-haba
3’,5’-dimethyl-haba
Naphthyl-haba
Burroughs-Wellcome inhibitor
1476u89

FAD

Inhibitor apSa

flavin mononucleotide
Adenine

Adenine

Maltose

Galactose

beta-d-ribose
Lysine

Histidine
Pyridoxal-5-phosphate

(1r)-1-cyclohexyl-3-phenyl-1-
propyl (2s)-1-(3,3-dimethyl- 1,2-
dioxopentyl)-2-
piperidinecarboxylate

Inositol trisphosphate

sialic acid
2,3-dehydro-2-deoxy-n-acetyl
neuraminic acid
4-(acetylamino)-3-hydroxy-5-
nitrobenzoic acid

Inhibitor SU5402

7.24
7.53
0.76
2.19

8.87°
0.98
1.2
3.51
0.42
0.92

1.27

0.56
0.61

1.68
2.37

2.27

- 5.03

0.93
0.75

0.83

0.76

1. Structure of the receptor from this PDB entry was used in all docking simulations

involving the same protein.

2. Flavine nucleotide moiety was docked well, while the other half (adenosine) deviates

significantly from its native position.
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Fig. 1(a) Four types of internal variables considered in ICM. (b) The ICM tree
representing the geometry of multimolecular arbitrarily fixed system and
containing both real atoms and bonds (continuous lines) and virtual ones (dot-
dashed lines). Atoms are numbered so that any atom in the directed graph starts a
subtree with a continuous numeration. An arbitrary subset of free internal
variables is shown in bold black characters, all the others being fixed (gray
characters). The atomic regular directed graph is the basic one, the orderof
variables and rigid bodies following it. The numeration does not change as a result
of refixation and redefinition of the rigid bodies. The attribution of the main
(torsion) branch at the branching point is arbitrary and does not necessarily follow
the atomic numeration.



Fig. 2(a,b) Comparison of predictions and experimentally determined structures
for 53 protein-ligand complexes. '



Lysozyme mutant complexes with various Adenylate kinase complex with with the inhibitor apSa Aspartate aminotransferase complexed
small aromatic and hetroaroratic compounds with pyridoxal-5’ -phosphate

Retinol binding protein complexes with n-cthyl retinamide, FK506 binding protein complex with (Ir)-1-cyclohexyl-3-phenyl-1- Glycinamide ribonucleoti lase complex with
fenretinide. retinoic ocid and axerophthene propyl(2s)-1-(3,3-dimethyl- 1,2-dioxopentyl)-2-piperidinecarboxylate Burroughs-Wellcome inhibitor 1476u89

Glucose/galactose-binding protein cormplex with galactose Faty acid binding protein complexes with
elaidic, oleic and stearic acids

Histidine-binding protein complex with histidine

Intestinal fatty acid binding protein complexes Lysine-. arginine-, omithine-binding protein complex with lysine
with myristate and oleate




Phospholipase ¢ d-1 complex with inositol trisphosphate
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Streptavidin complexes with
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2.3-dehydro-2-deoxy-n-acetyl acuraminic acid
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Trypsin ipl with inhibitors b
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with
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Tpa




Comparative Study of Several Algorithms for Flexible
Docking

Badry D. Bursulaya,! Maxim Totrov,! Ruben Abagyan'? and Charles L.
Brooks IIT!

1 Department of Molecular Biology, The Scripps Research Institute, 10550
North Torrey Pines Road, La Jolla, CA 92037

2 Genomics Institute of the Novartis Research Foundation, 8115 Merryfield
Row, San Diego, CA 92121

Abstract

We have tested several programs for flexible molecular docking:
DOCK 4.0, FlexX 1.8, AutoDock 3.0 and ICM 2.8. This was done by
doing two kinds of studies: docking experiments on a data set of 37
protein-ligand complexes and screening a library containing 10,037
entries against 11 different proteins. The docking accuracy of the
methods was judged based on the corresponding rank 1 solutions. We
found that on average the solutions produced by ICM have the highest
accuracy. All other methods are less accurate and their predictions are
of approximately the same accuracy. The efficiency of docking, which
measure a computational cost of achieved accuracy, is very low in case
of AutoDock and approximately the same for all other methods. The
database screening was performed using DOCK, FlexX and ICM. In
19 cases ICM is able to find original ligands within the top 1 % of the
total library. The corresponding number for DOCK and FlexX is 8
and 11 respectively. i




1 Introduction

Molecular docking has become a useful tool in drug discovery efforts. The
screening of large databases for possible lead compounds is nowdays becom-
ing a routine procedure. Until recently the molecular docking was performed
using a single conformation for each ligand. This approach, which treats lig-
and as a rigid body, is CPU benign and thus satisfies a key requirement that
docking algorithm should not spend more than few minutes per compound
while searching the database. However, the constraints introduced by fixing
the internal degrees of freedom of the ligand, although advantageous in terms
of computational cost, could have a negative impact on the ability to make
a valuable prediction. In particular, the freezing of internal motion may pre-
vent ligand from adopting a conformation that would fit better into a binding
site of a receptor. Thus efforts has been advanced to develop algorithms for a
flexible ligand docking. Based on the approach to the conformational search
of flexible ligand, we can group the algorithms in the following two major
classes: algorithms, which try to fit the ligand into the binding pocket of
the protein by matching (geometrically, chemically, energetically etc.); and
algorithms, which find an optimum ligand conformation by solving a global
energy optimization problem. In this study we attempt to evaluate the per-
formance of several programs employing algorithms of both classes. The first
group of algorithms is represented by programs DOCK and FlexX, and the
second group is represented by programs AutoDock and ICM. All these pro-
grams are publically available and were obtained by us under either academic
(DOCK 4.0, AutoDock 3.0, and ICM 2.8) or demo (FlexX 1.8) licenses. In
order to compare the performance of selected programs, we undertook two
kinds of studies: cross—docking experiments involving protein-ligand com-
plexes with different ligands but the same protein and database screening
against the same proteins. We have chosen to perform the cross—docking ex-
periments because they have the same underlying principle as the database

screening experiments: in both cases different ligands are being fitted into



the same receptor. Alternatively, we could have used an uncomplexed pro-
teins for docking experiments. However, this approach is problematic since
the crystal structure of apoproteins is rarely available and in addition one
would need to employ flexible receptor description. The dataset for docking
experiments included 11 groups of complexes, each group containing between
two and eight members. The library for screening experiments contains lig-
ands from docking dataset and additional 10,000 molecules randomly selected
from a database of commercially available compounds (ACD) distributed by
MDL.

The outline of the paper is as follows. First we briefly review the algo-
rithms employed by the programs. Next we describe input data preparation
and docking protocols. Finally we present results on docking and screening

experiments.

2 Algorithms

Here we briefly outline the docking algorithms employed by AutoDock, DOCK,
FlexX, and ICM. The reader is referred to the original papers for a detailed

account.

AutoDock

AutoDock explores the conformational space of the ligand using the Lamarkian
genetic algorithm (LGA), which is a hybrid of a genetic algorithm (GA)
with an adaptive local search (LS) method.! In this approach the ligand’s
state is represented as a chromosome, which is composed of a string of real-
valued genes, describing ligand’s location (three coordinates), orientation
(four quaternions) and conformation (one value for each torsion). The simu-
lation is started by creating a random population of individuals. It is followed
by a specified number of generation cycles, each consisting of the following
steps: mapping and fitness evaluation, selection, crossover, mutation and

elitist selection. Each generation cycle is followed by a local search. The




solutions are scored using the energy scoring finction, which include terms
accounting for short-ranged van der Waals and electrostatic interactions, loss

of entropy upon ligand binding, hydrogen bonding and solvation.

DOCK and FlezX

Both DOCK? and FlexX%* employ the incremental reconstruction algo-
rithm. In this algorithm rigid anchor (DOCK) or base (FlexX) fragments
are identified first. At the next step the selected fragment is placed into
the active site of the receptor using sphere-matching procedure (DOCK) or
hashing technique (FlexX). The complete ligand is constructed by adding
the remaining components step by step. At each step of reconstruction a
specified number of optimal partial solutions are selected for the next ex-
tension step. In DOCK the solutions are scored using energy, contact or
chemical scoring functions. The energy scoring function, which was used in
this study, includes van der Waals and electrostatic components. In FlexX
the scoring is done using a modified Bohm scoring function, which includes
the following terms: éntropic, which accounts for loss of entropy upon lig-
and binding; hydrogen bonding; ionic, acounting for electrostatic interac-
tions; aromatic, which accounts for interactions between aromatic groups;
and lipophilic, which accounts for hydrophobic interactions. All terms, ex-
cept the entropic, are scaled by the corresponding heuristic distance and

angle dependent penalizing functions.
ICM

ICM performs flexible docking via Monte Carlo global optimization of
the effective énergy function in the internal coordinate space of the flexible
ligand and flexible receptor.>” The effective energy function includes the
following terms: intramolecular van der Waals and torsion energy; modified
intermolecular van der Waals interaction energy; hydrogen bonding term;
term accounting for hydrophobic interactions; and electrostatic term using

modified Coulomb law with distance dependent dielectric constant ¢ = 4r.
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The Monte Carlo procedure employed by ICM includes two types of moves:
a pseudo-brownian positional move and a biased-probability multitorsion
move. Each move is followed by full local energy minimization. Pseudo-
Brownian random move changes the ligand position by moving the entire
molecule with a certain amplitude and rotating it randomly around its center
of mass by a certain angle. Biased-probability multitorsion move can be used
to implement the flexible description of the receptor side-chains, however
this capability was not invoked in the present study. Global optimization is
performed starting from multiple starting points. The solutions are scored

using the effective energy function.

3 METHODS

Input data preparation and algorithms comparison methodology

(1) The proteins which we have chosen for docking and database screening
experiments, satisfy the following criterea: they have at least two entries with
different ligands in the protein databank (PDB); they do not form covalent
bonds with their respective ligands; majority of their ligands have relatively
large number of rotatable bonds (see Table 1).

(2) The ligand input files were prepared according to the following prece-
dure. First, we extracted ligand coordinates from the the corresponding PDB
file and assigned chemical bonds, partial charges and added hydrogen atoms
using ICM. All carboxylic acid and phosphoric acid groups were ionized and
all amino-groups were protonated. Next, all torsion bonds were randomized
and local minimization was performed. After that the ligand coordinates
were modified in such a way that its center of geometry was superimposed
with that of the reference ligand. Finally, the ligand coordinates were written

into MOL2 and PDB format files.

(3) The receptor input files' were prepared according to the following
precedure. First, we removed from the corresponding PDB file all water

molecules, ligand atoms and those ions, which did not belong to the active
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site of the receptor. Next hydrogen atoms were added and partial charges
were assigned using ICM. This was followed by a local minimization. Finally,
the receptor coordinates were written into MOL2 and PDB format files.

(4) The docking experiments were performed on the same computer and
CPU time required for docking was recorded. The docking protocols are
described in the next section. We emphasize here, that all methods use the
same receptor coordinates and start with exactly the same initial location,
conformation and orientation of the ligands. The length of the docking ex-
periments was controlled by the default or recommended parameter settings.
We observed that doubling the length of the docking experiments does not
improve significantly the accuracy of the solutions.

(5) For each docking method only the best scoring solution per com-
plex was saved. Different algorithms were compared based on the root-mean
square deviation (RMSD) of heavy atoms of the best predicted structures
from the corresponding crystal structures. If the ligand has local topological
symmetry at single bonds, whose torsion angle can be changed by a rotation
of less than 360° without changes in the global conformation of the ligand,
the RMSD of alternative orientations was calculated and thé smallest one
was kept for the purpose of comparison of different algorithms. The coor-
dinates of ligand structure, used for RMSD calculations, were obtained by
superimposing its the crystallographic coordinates protein coordinates with
the receptor coordinates used for the docking.

(6) In order to quantify ligand docking quality and compare performance
of different methods, we introduced the docking acciracy (DA) function,
which makes use of RMSD values and measures how accurately the ligands

~ members of a particular group, — are docked by a given method:

DA = frmstZ +0.5 (frmsdf:i - frmsd§2) 3 (1)

where frmsd<a indicates the fraction of ligands docked into a given receptor

with RMSD less or equal a A. The docking accuracy of the method for a
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particular receptor is zero if frmsi<3 is zero.

Docking protocols

In all algorithms studied here, the receptor is treated as a rigid body and
a grid potential is used to evaluate the scoring functions. This simplifica-

tion allows to perform docking more efficiently, which is especially crucial in

database screening.

AutoDock

AutoDock requires the receptor and ligand coordinates in MOL2 format.
Nonpolar hydrogen atoms were removed from the receptor file and their
partial charges were added to the corresponding carbon atoms. The program
Mol2topdbgs was used to transform receptor MOL2 file into PDBQS format

file containing the receptor atoms coordinates, partial charges and solvation

* parameters. The program AutoTors was used to transform ligand MOL2 file

into PDBQ file, merge nonpolar hydrogen atoms and define torsions. The
grid calculations were setup with utility Mkgpf3 and maps were calculated
with program AutoGrid. The grid maps were centered on the ligand’s binding
site and they were 61 x 61 x 61 points. The default parameters setting,
generated by program Mkdpf8, was used for docking. For each complex 10
dockings were performed. The initial population was set to 50 individuals;
maximum number of energy evaluations was 2.5 x 10% maximum number
of generations was 27,000. The other parameters provided by the default

setting were the same as in Ref. [1].
DOCK

DOCK requires the following receptor files: MOL2 format file containing
coordinates of all atoms; PDB file containing heavy atoms coordinates only;
and PDB file containing heavy atoms excluding those of the active site. The

active site atoms included those receptor atoms which were within 6.5 A from




the reference ligand atoms. The ligand coordinates were provided in MOL2
format. The site points for the ligand docking were identified using SPHGEN
program. The number of docking points did not exceed 50. Energy score
was employed for orientational and conformational search. Grid maps were
calculated using Grid program, with grid spacing of 0.5 A. The energy cutoff
distance of 10 A was employed. Electrostatic interaction were calculated
with distance depending dielectric constant. The dielectric factor was set
to 4. Proteins were represented by a united atom model. Flexible bonds
and anchors were automatically identified by the DOCK. Conformational
search was done with torsion drive. The clash overlap set to 0.5. Top 25
conformations were retained during each cycle of the search. Multiple anchors
were’allowed, with minimum number of heavy atoms in the anchor set to 10.
Orientational search was performed with an automated matching. Maximum
number of orientations was 500 for docking experiments and 100 for database
search. The local energy minimization of orientations and conformations of
ligand and anchor was performed. The ligand reminimization was turned on.

The default minimization parameters were employed.
FlexX

FlexX requires MOL2 format file for the ligand and PDB format file
for the receptor. The default settings as provided with FlexX 1.8 package
were used for flexible docking and database screening. The conformational
flexibility of the ligand is modeled by a discrete set of preferred torsional

angles for acyclic single bonds. The rings were considered rigid, since the
| program CORINA for treating multiple conformations of the rings was not
included in the distribution. The active site and the interaction surface
of the receptor were defined by placing a reference ligand and using 6.5 A
cutoff distance. Base fragments were selected automatically. The maximum
number of base fragments was 4. The base fragment was placed into the
active site by using two algorithms. The first one superimposes triples of

interaction centers of a base fragment with triples of compatible interactions
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in the active site. The second algorithm, called matching, is used when
the base fragment had fewer than three interaction centers. The maximum

number of solutions retained for the next iteration step was 400.

ICM

Grid maps were calculated with a grid spacing of 0.5 A. Docking was
performed with a default script provided by ICM. During the docking, either
one of the torsional angles of the ligand was randomly changed or pseudo-
Brownian move was performed. Each random change was followed by 100 of
local conjugate-gradient minimizaion. The new conformation was accepted
or rejected according to Methropolis rule using temperature of 600 K. The
length (number of Monte Carlo steps) of docking run as well as the length
of local minimiztion length was determined automatically by the adaptive

algorithm, depending on the size and number of flexible torsions in the ligand.

4 RESULTS

All docking experiments and database screening were performed on a SGI
10000 equipped with a single 195 MHz IP28 processor and 128 MB main

memory.
Docking experiments

The following receptors were used for docking experiments: trypsin (PDB
entry 3ptb), cytochrome P-450c,m (PDB entry 1phf), neuraminidase (PDB
entry 1nsc), carboxypeptidase A (PDB entry lcbx), L-arabinose binding pro-
tein (PDB entry labe), e-thrombin (PDB entry letr), thermolysin (PDB
entry 3tmn), pencillopepsin (PDB entry lapt), intestinal fat-acid binding
protein (PDB entry licm), ribonuclease T, (PDB entry 1gsp), and carbonic
anhydrase II (PDB entry 1cil). Most receptors have three ligand members
with with exception of trypsin, which has 8 members and penicillopepsin,

which has 2 members.



The complexes for which cross-docking experiments were performed and
the docking results, such as RMSD values and CPU times, are given in
Table 1. The docking accuracies of studied programs are summarized in
Table 2. We see that ICM is the most accurate in predicting correct protein—
ligand conformations. It gets perfect score of one for 5 receptors, which means
that all members of those receptors are docked within RMSD less than 2 A
from the corresponding crystal structures. Other methods are much less
accurate in their predictions. In particular, we observe that there are several
receptors for wich they fail to produce any acceptable solution at all. Those
are e-thrombin, thermolysin and carbonic anhydrase II in case of AutoDock;
neuraminidase, carboxipeptidase and pensillopepsin in case of DOCK; and
thermolysine, pensillopepsin and carbonic anhydrase II in case of FlexX. On
average the docking accuracy of AutoDock and FlexX is approximately the
same and that of DOCK is slightly worse.

As evident from Table 2 the average docking time increases in the follow-
ing order: FlexX, DOCK, ICM and AutoDock. The low docking speed of
AutoDock suggests that at the present time it is not suitable for database
screening on a single processor computer. We note, however, that compared
to overall cost in the drug development process the computational cost is
of lesser importance. Moreover, it is deemed to reduce owing to rapid de-
velopments in computer industy. Thus when comparing different docking
algorithms more emphasis should be attached to their accuracy rather than
the computational cost. With this in mind we conclude based on the results
of docking experiments that the Internal Coordinates Method has the best
docking performance among studied algorithms.

Before proceeding to the library screening results, we note that in all
docking experiments we used receptor and ligand MOL2 files generated by
ICM. However, according to AutoDock, DOCK and FlexX manuals, it is
recommended to use SYBYL to generate the ligand and receptor (AutoDock
and DOCK) input files. The only difference between input files generated
by SYBYL and ICM is in partial atomic charges. ICM uses bond charge
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increment method from MMFF94 (Halgren) to assign partial atomic charges.
In order to be certain that our results are not influenced by partial charges
provided by ICM, we repeated docking experiments for AutoDock, DOCK
and FlexX using charges generated by SYBYL: Kollman charges for receptor
atoms and Gasteiger charges for ligand atoms. Our findings indicate that
the accuracy of AutoDock, DOCK and FlexX with SYBYL charges was the

same as with ICM charges.
Database screening

The same proteins that were used for docking experiments have been
chosen to perform screening of a ligand library. As was mentioned in intro-
duction, this library contains ligands that were used for docking experiments
and additional 10,000 molecules selected randomly from ACD library. The
purpose of the screening experiments was to find out how well the programs
would distinguish the original ligands of the complexes among all database
molecules. This has a tremendous practical implications, since good dock-
ing algorithm allows to cut significantly the cost of drug discovery process
by reducing the fraction of compounds of the ligand library that should be
analyzed experimentally as potential drug candidates. In order to quantify

the database screening we use the following virtual screening (VS) function:

VS = fa+0.5(f<s — f<1)s (2)

where f<, indicates the fraction of original ligands found within top a % of
scanned solutions. The virtual screening function varies between 0 and 1.
The value VS for a particular receptor molecule is 1 if all of its ligands are
found within top 1 % of scanned solutions and 0 if no original ligands are
found within top 5 % of scanned solutions. The results of screening performed
by DOCK, FlexX and ICM are summarized in Table 3 and the VS values
are given in table 4. First we note that out of 37 original ligands ICM

places 19 ligands within top 1 % scanned solutions, while the corresponding
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number fbr DOCK and FlexX is 8 and 11 respectively. The easiest receptor
for screening experiments is L-Arabinose, since all algorithms assign very
high scores (VS equals 1) to its original ligands. There are also receptors
for which algorithms fail to place original ligands even within 5 % of top
scoring solutions. There are 4 such receptors in case of DOCK, 3 receptors
in case of FlexX and 2 receptors in case of ICM. The average value of the
virtual screening function is 0.30, 0.32 and 0.6 for DOCK, FlexX and ICM
respectively. This result suggest, that it is sufficient to consider top 5 % of
best scoring solutions produced ICM as potential drug candidates, while in
case of DOCK and FlexX more than 5 % of top scorers should be taken for
experimental verification.

As a sidenote, we found that the database screening results with DOCK
are improved somewhat if the chemical scoring function is employed instead
of energy score. This contrasts the results of docking experiments, where no

influence of the the choice of scoring function was found.

5 CONCLUSIONS

Our results indicate that ICM outperforms other docking programs in both

docking and database screening experiments.
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Table 1 Results of the Docking Experiments

Ligand Nrot® | AutoDock® | DOCK® FlexX’ ICM®
Trypsin

3ptb 3 0.80 (323) | 0.59 (23) | 1.11 (15) | 0.49 (77)
ltng 2 0.62 (270) | 0.86 (20) | 1.08 (5) | 0.71 (79)
1tnj 3 1.21 (290) | 1.56 (22) | 1.73 (35) | 2.17 (21)
1tnk 4 1.69 (330) | 1.87(29) | 1.70 (11) | 2.53 (26)
1tni 5 2.61 (367) | 5.26 (35) | 2.73 (12) | 3.40 (39)
1tnl 1 0.41 (300) | 2.08 (25) | 3.74 (30) | 1.93 (17)
1tpp 7 | 1.80 (330) | 3.25 (46) | 1.95 (47) | 1.71(53)
1pph 11 5.14 (920) | 3.91 (212) | 3.27 (51) | 1.44 (207)
Cytochrome P-450cam

1phf 1 2.09 (254) | 2.39 (25) | 4.68 (72) | 1.23 (28)
1phg 5 3.52 (390) | 5.57 (39) | 4.87 (169) | 0.46 (57)
2cpp 3 | 3.40 (230) | 2.48 (22) | 0.44 (6) | 2.53 (34)
Neuraminidase

1nsc 12 1.40 (610) | 4.86 (97) | 6.00 (57) | 1.80 (119)
1nsd 11 1.20 (600) | 4.51 (110) | 1.56 (88) | 1.04 (70)
1nnb 11 0.92 (650) | 4.51 (88) | 0.92 (71) | 1.09 (108)
Carboxypeptidase A :

lcbx 5 1.33 (354) | 3.13 (45) | 1.32 (24) | 0.82 (40)
3cpa 8 2.26 (512) | 6.48 (56) | 1.51 (172) | 0.77 (51)
6cpa 16 | 8.30 (1007) | 8.30 (163) | 9.83 (81) | 1.60 (350)
L-Arabinose binding protein .

labe 4 0.16 (340) | 1.87 (32) | 0.55(30) | 0.36 (38)
labf 5 0.48 (320) | 3.25 (36) | 0.76 (35) | 0.61 (37)
5abp 6 0.48 (400) | 3.89 (43) | 4.68 (29) | 0.88 (42)
e-Thrombin

letr 15 | 4.61 (1153) | 6.66 (371) | 7.26 (104) | 0.87 (444)
lets 13 | 5.06 (1366) | 3.93 (522) | 2.11 (69) | 6.22 (344)
lett 11 |8.12 (1003) | 1.33 (371) | 6.24 (72) | 0.99 (219)
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Continuation of Table 1.

Thermolysin

3tmn 10 | 4.51 (630) | 7.09 (107) | 5.30 (67) | 1.36 (99)
5tln 14 | 5.34 (711) | 1.39 (140) | 6.33 (62) | 1.42 (196)
6tmn 20 | 8.72 (1027) | 7.78 (262) | 4.51 (67) | 2.60 (420)
Penicillopepsin

lapt 30 | 1.89 (1242) | 8.06 (416) | 5.95 (76) | 0.88 (700)
lapu 29 | 9.10 (1002) | 7.58 (409) | 8.43 (78) | 2.02 (590)
Intestinal FABP

licm 13 | 1.80 (583) | 3.99 (112) | 2.94 (31) | 1.11 (154)
licn 17 | 3.99 (583) | 3.88 (166) | 2.95 (42) | 1.35 (314)
2ifb 15 | 3.09 (513) | 1.43 (135) | 8.94 (14) | 1.04 (234)
Ribonuclease T,

1gsp 4 | 2.67(592) | 1.16 (59) | 3.71 (44) | 0.54 (59)
1rhl 7 | 0.96 (710) | 0.71 (72) | 1.15(51) | 3.53 (78)
1rls 7 | 0.98 (703) | 1.75 (76) | 4.33 (72) | 0.79 (77)
Carbonic Anhydrase II

1cil 6 | 5.81 (460) | 2.78 (63) | 3.52 (87) | 2.00 (58)
1okl 5 | 8.54 (396) | 5.65 (38) | 4.22 (105) | 3.03 (42)
lenx 13 | 10.9 (700) | 7.35 (63) | 6.83 (72) | 2.09 (176)

a) Number of rotatable bonds in the ligand.
b) First number is RMSD values in A; the second number (in parentheses)

is docking time in seconds.
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Table 2 Docking accuracies and average docking times (seconds) of algorithms

Receptor AutoDock DOCK FlexX ICM
Trypsine 0.81 (391.2) | 057 (51.5) | 0.73 (25.7) | 0.75 (64.9)
Cytochrome P450am | 0.17 (291.3) | 0.33 (28.7) | 0.33 (82.3) | 0.83 (39.7)
Neuraminidase 0.67 (620) | 0(98.3) | 0.67(72) | 1.00 (99)
Carboxypeptidase 0.50 (624.3) | 0 (88) | 0.67 (92.3) | 1.00 (147)
L-Arabinose 1.00 (353.3) | 0.33 (37) | 0.67 (31.3) | 1.00 (39)
¢~ Trombin 0 (1174) | 0.33 (421.3) | 0.17 (81.7) | 0.67 (335.7)
Thermolysin 0 (789.3) |0.33 (169.7) | 0 (65.3) |0.83 (238.3)
Pencillopepsin 0.50 (1122) | 0(4125) | 0(77) | 1.00 (645)
Intestinal Fat-Acid 0.33 (559.7) | 0.33 (137.7) | 0.33 (29) | 1.00 (234)
Ribonuclease T; 0.83 (668.3) | 1.00 (69) | 0.33 (55.7) | 0.67 (71.3)
Carbonic Anhydrase IT | 0 (518.7) | 0.17 (54.7) 0 (88) 0.67 (92)
Average 0.44 (646.5) | 0.31 (142.6) | 0.39 (63.7) | 0.93 (182.3)
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Table 3 Results of the Virtual Database Screening

Ligand DOCK* FlexX* ICM*
Trypsin 9928

3ptb 2014 (20.3) | 1391 (14) 15 (0.1)
1tng 2855 (28.7) | 3056 (31) 27 (0.3)
1tnj 4478 (45.1) | 4757 (48) 106 (1.1)
1tnk 5771 (58.1) | 3685 (37) | 1463 (14.6)
1tni 4330 (43.6) | 3821 (38) 60 (0.6)
1tnl 8138 (81.9) | 3880 (39) | 5181 (51.6)
1tpp 393 (4.0) 27 (0.3) 45 (0.4)
1pph 37 (0.4) 63 (0.6) 32 (0.3)
Cytochrome P-450,m 9928

1phf 2676 (26.9) | 1309 (13.2) | 1010 (10.1)
1phg 6022 (60.6) | 141 (1.4) | 1280 (12.7)
2cpp 724 (7.3) | 1250 (12.6) | 1171 (11.7)
Neuraminidase 8418

1nsc 1893 (19.0) | 611 (7.2) | 503 (5.01)
1nsd 933 (9.4) 252 (3.0) 44 (0.44)
1nnb 664 (6.7) 116 (1.4) 43 (0.43)
Carboxypeptidase A 8951

1cbx 3656 (36.8) | 240 (2.7) 23 (0.2)
3cpa 1411 (14.2) | 122 (1.4) 32 (0.3)
6cpa 842 (8.5) 246 (2.7) 360 (3.4)
L-Arabinose binding protein 7593

labe 52 (0.5) 19 (0.2) 1 (0.01)
labf 119 (1.2) 15 (0.2) 3 (0.03)
5abp 21 (0.2) 29 (0.4) 2 (0.02)
e-Thrombin 5579 '

letr 556 (5.6) 23 (0.4) 157 (1.6)
lets 38 (0.4) 13 (0.2) 672 (6.7)
lett 90 (0.9) 485 (8.7) 6 (0.06)
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Continuation of Table 3.

Thermolysin 8353

3tmn 3412 (34.3) | 289 (3.5)

5tln 6554 (66.0) | 53 (0.6)

6tmn 1494 (15.0) | 707 (8.5)
Penicillopepsin 8778

lapt 28 (0.3) | 3637 (41) | 110 (1.1)
lapu 377 (3.8) | 7036 (80) | 1286 (12.8)
Intestinal FABP 5903

licm 1008 (10.1) | 3562 (70.8) | 266 (2.6)
licn 335 (3.4) | 3856 (75.1) | 48 (0.5)
2ifb 704 (7.1) | 5097 (99.3) | 49 (0.5)
Ribonuclease T, 9870

1gsp 442 (4.4) | 1060 (10.7) | 59 (0.6)
1rhl 553 (5.6) | 1009 (10.2) | 45 (0.4)
1rls 6849 (68.9) | 735 (7.4) | 9090 (90.6)
Carbonic Anhydrase II 9857

1lcil 3476 (35.0) | 364 (3.7) | 7193 (71.7)
1okl 1841 (18.5) | 1907 (19.3) | 3105 (30.9)
lenx 29 (0.3) | 1429 (14.5) | 9090 (90.6)

a) First number is a rank of the original ligand of the receptor; second

number (in paretheses) is a corresponding fraction in the total database.

18



Table 4 Virtual screening functions

Receptor DOCK | FlexX | ICM
Trypsine 0.19 0.25 | 0.75
Cytochrome P450¢am 0 0.33 0
Neuraminidase 0 0.33 | 0.83
Carboxypeptidase 0 0.33 | 0.83
L-Arabinose 1 1 1
e-Trombin 0.66 0.66 | 0.5
Thermolysin 0 0.5
Pencillopepsin 0.75 0 0.5
Intestinal Fat-Acid 0.17 0 0.83
Ribonuclease T; 0.17 0 0.67
Carbonic Anhydrase IT | 0.33 0.17 0
Average 0.30 0.32 0.6
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